Fundamentals of Single and Multiple Row Detector Computed Tomography

Mahadevappa Mahesh, Ph.D.

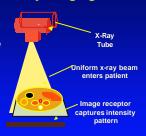
À

The Russell H. Morgan Department of Radiology and Radiological Science The Johns Hopkins University Baltimore, MD. USA

Outline

- Single row detector helical CT
- Multiple row detector helical CT

 Four section/rotation scanners
 Scanners with >4 sections/rotation
- X-ray tube issues
- Relationship between pitch, dose, noise and section thickness


Introduction

- A recent survey* of internists rates CT among top 5 major medical innovations over the past 30 years
- Two major evolutionary leaps occurred during last decade, spiral or helical CT in early 90's and multiple-row detector CT late 90s to present
- CT has evolved considerably since its invention in 1972, the progression might be characterized as search toward the 3D radiograph

*Decisions in Imaging Economics, Nov 2001

Conventional X-ray Imaging

Non-uniform beam exits opposite surface with intensity pattern due to differential attenuation of rays along different paths through patient

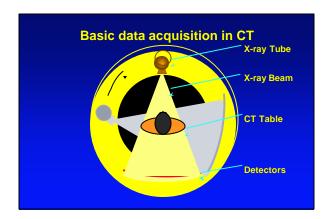
2D Images of 3D Anatomy from Single Projection

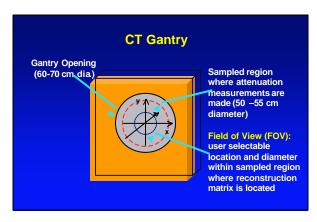
Image due to differences in x-ray attenuation along different paths through the patient

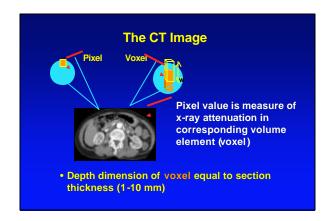
The Problem

- Resolution >5 lp/mm
- Acquisition time <<1 s (stops physiologic motion)

But in 2D images of 3D anatomy

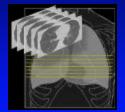

- Tissues are superimposed
- Poor contrast resolution due to high scatter acceptance by image receptor

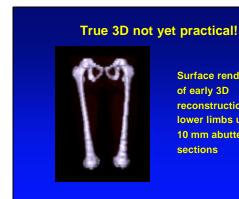

Ultimate Goal: 3D Radiography


- Resolution as good as conventional radiography in all planes
- High contrast sensitivity (no scatter)
- Fast acquisition times to stop physiologic motion
- Can CT get us there?

Computed Tomography

- Method for acquiring and reconstructing an image of a thin cross-section of an object
- Based on measurements of x-ray attenuation through the section plane using many different projections

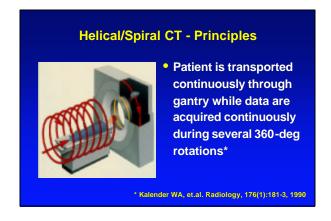


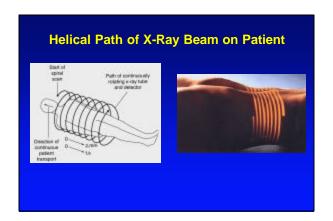

Limitations of Conventional CT

- Scan plane resolution is ~1-2 lp/mm
- Poor z-axis resolution
 - Section thickness ranges 1 to 10 mm
 - Volumes under-sampled with abutted slices
- Inter-scan delay due to stop-start action necessary for table translation and cable unwinding
- Section-to-section misregistration due to variation in patient respiratory motion

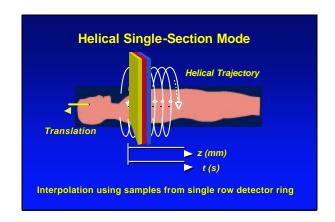
Progress toward true 3D imaging "Possible"

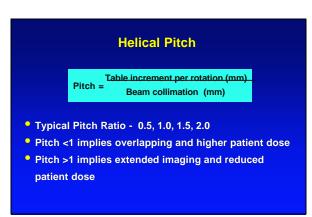
- "Step-like" contours
- Large temporal lag between sections
- Not useful with physiologic motion

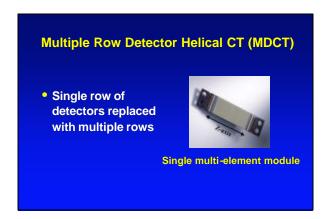

Surface rendition of early 3D reconstruction of lower limbs using 10 mm abutted sections

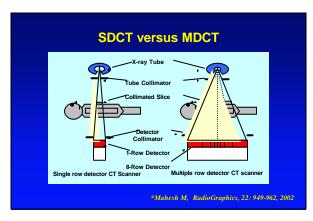

Technological Advances That Led To: Helical (Spiral) Acquisition

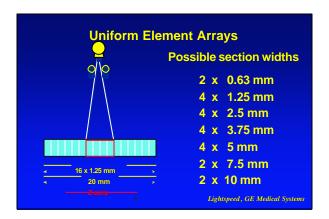
- Slip-Ring gantry
- High power x-ray tubes
- Interpolation algorithms

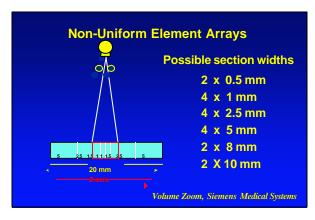

Slip-Ring Technology Permits continuous rotation of tube and detectors while maintaining electrical contact with stationary components Projection data Power supply


Slip-Ring Technology

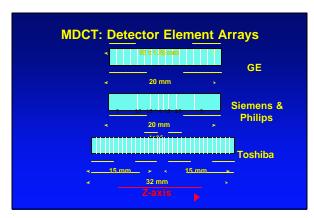


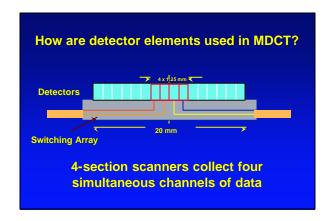

Capabilities of Single Row Detector CT (SDCT)

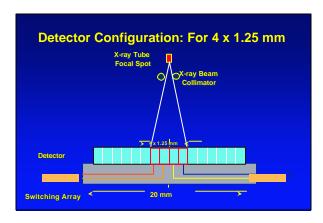

- Large tissue volumes scanned in short times
- Inter-scan delay eliminated
- Arbitrary section position within scanned volume permits over-sampling without increased dose
- Z axis resolution improved by over-sampling
 Up to ~ 2 lp/cm (best case), usually 0.5 to 1.0 lp/cm

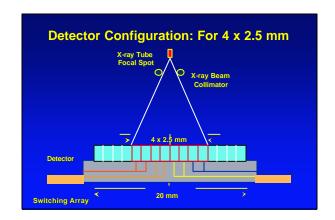

Limitations of SDCT

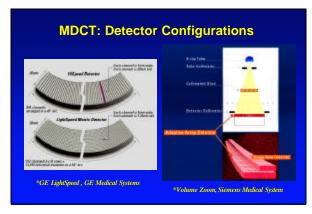
- Large volume scan in short duration is limited
- Near isotropic resolution only over small volume
- Poor utilization of X-ray tube
- Multiple row detector CT (MDCT) offers substantial improvement in volume coverage, scan speed with efficient use of x -ray tube

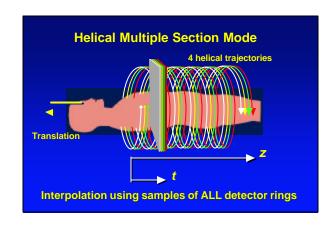


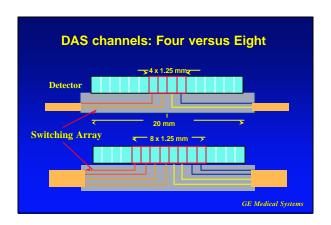


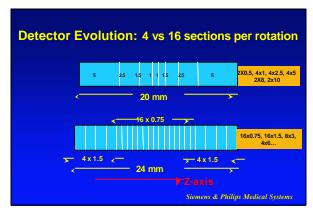


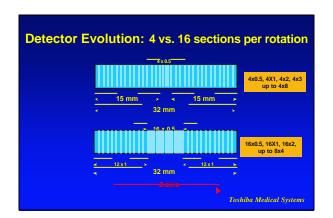


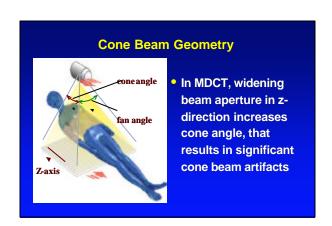


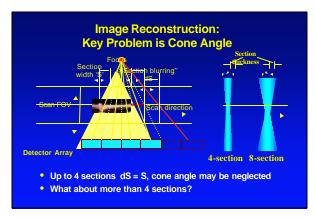


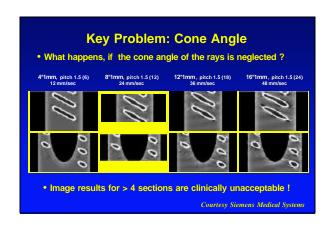


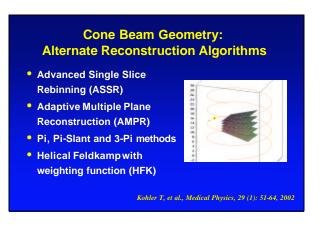


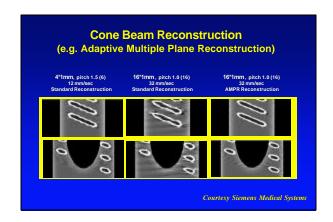


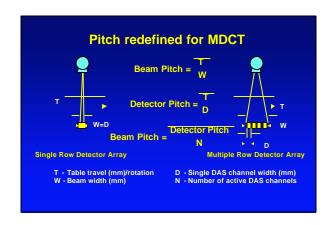


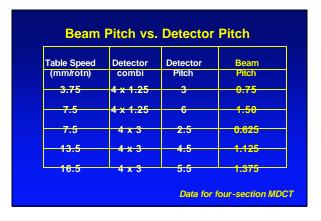


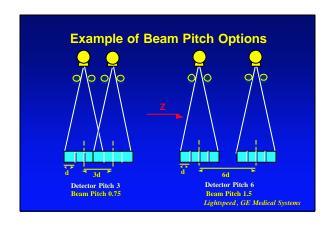












Beam Pitch

- Beam Pitch >1 implies extended imaging and reduced patient dose with lower axial resolution
- Beam Pitch <1 implies overlapping and higher patient dose with higher axial resolution

Beam Pitch vs. Volume Coverage

- Increase in pitch implies faster acquisition and larger volume coverage
- Lower pitch implies slower table speed with overlapping of tissue (for P<1) and smaller scanned volume

Dose in Helical CT varies as:

Dose Heam Pitch (mAs/rotation)

Beam Pitch vs. Dose

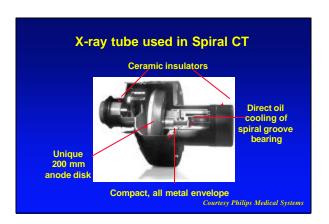
- Varying pitch results in increase or decrease of radiation dose to patient
- However in some MDCT scanner, image noise is maintained constant by varying tube current ("effective mAs"), resulting in patient dose independent of pitch*

*Mahesh M, et.al., AJR, 177: 1273-1275, 2001

High Power X-ray Tubes

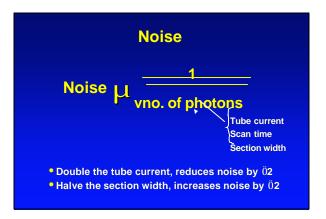
X-ray Tubes

- In helical CT, Z-axis resolution and scan volume place huge demands on tube
- Several technical advances have been made to achieve power levels and deal with problems of heat generation, storage and dissipation


X-ray tubes used for Spiral CT

- Larger anode disks allow higher tube currents
- Anodes of graphite based body with tungstenrhenium or tungsten-zircon-molybdenum*
 layer deposited by sintering or chemical or physical vapor process

* Ammann E, et al., BJR, 70, S1 -S9, 1997


X-ray tubes used for spiral CT

- Metal envelopes with ceramic insulators provide higher heat storage capacity
- Spiral groove bearings improve heat dissipation requiring shorter cooling periods and therefore allow continuous rotation with minimal wear

Modern CT X-Ray Tubes

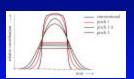
- Heat storage capacity exceeds >3-8 MHU
- No longer the limitations for studies demanding higher speed and larger volume coverage

Noise vs. Pitch

- For SDCT, noise is independent of pitch for constant mAs and section width
- However on most MDCT scanners, system software automatically adjust scanmA per protocol to obtain comparable image noise as user alters acquisition parameters

Effective Section Thickness

Section and Beam Collimation

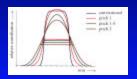

- SDCT: Both are same, influences z-axis coverage per gantry rotation
- MDCT: Section thickness* is total beam collimation divided by number of active detector channels

- e.g., 10 mm / 4 channels = 4 x 2.5 mm

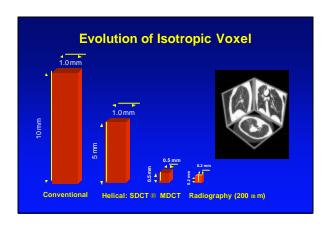
 $*defined\ at\ center\ of\ rotation$

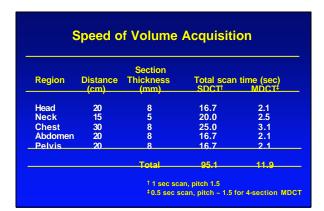
Section Thickness

- True thickness of the reconstructed image, measured as full width at half maximum (FWHM) of slice sensitivity profile
- Same as beam collimation in conventional scanning but different in spiral scanning

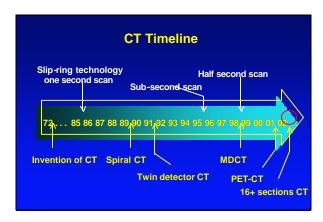

Slice Sensitivity Profiles: conventional and spiral acquisition

Effective Section Thickness


- Measure of slice sensitivity profile at FWHM
- Affected by beam collimation, pitch and interpolation algorithm
- In SDCT user selects section thickness, but true width of reconstructed section is influenced by pitch and interpolation algorithm (180° vs. 360°)
- In MDCT user selects beam collimation in combination with desired section width which is affected by pitch, interpolation algorithm & Z-filter


Pitch vs. Effective Section Thickness

- Increasing pitch broadens effective section thickness
- Structures outside nominal section thickness will contribute to image



MDCT Advantages Compared to SDCT Acquisition of same region in shorter scan time or larger region in same scan time Thinner slices yielding higher z-axis resolution Increased coverage per rotation Better tube utilization Greater coverage per breath hold

Better use of contrast agentsApproaching Isotropic Resolution!

Future Directions

- Partial rotation scan times ~150 ms possible!
- Cone beam reconstruction algorithms for 16, 40 and 64 row detectors are available
- Extended z-axis coverage to cover most organs in one or two gantry rotations should be possible with large area detectors or flat panel detectors

Conclusions

- CT technology has evolved to level where large 3D volumes can be imaged with:
 - isotropic resolution
 - acquisitions independent of most physiologic motion
- 3D imaging of 3D anatomy the 3D radiograph - is becoming a reality!