

Calibration and Quality Control of Monitors and Displays

S. Jeff Shepard, M.S.

Imaging Physics Department
The University of Texas
M. D. Anderson Cancer Center
Houston, Texas
ishepard@di.mdacc.tmc.edu

AAPM 200

Quality Assurance of Primary Display Devices

- Standards
- Performance Criteria
- Test methods (LCD only)
- QA program design and experience

AAPM 200

Quality Assurance (ACR)

"A test image, such as the SMPTE test pattern should be captured, transmitted, archived, retrieved, and displayed at appropriate intervals, but at least monthly, to test the overall operation of the system under conditions that simulate the normal operation of the system."

Quality Assurance (ACR)

"As a test of the display, SMPTE pattern data files sized to occupy the full area used to display images on the monitor should be displayed. The overall SMPTE image appearance should be inspected to assure the absence of *gross artifacts* (e.g., blurring or bleeding of bright display areas into dark areas or aliasing of spatial resolution patterns). Display monitors used for primary interpretation should be tested at least *monthly*. As a dynamic range test, both the 5% and the 95% areas should be seen as distinct from the respective adjacent 0% and 100% areas."

AAPM 2004

Contradicts SMPTE

Quality Assurance (ACR)

512? 1k? 2k?

"As a test of the display, SMPTE pattern data files sized to occupy the full area used to display images on the monitor should be displayed. The overall SMPTE image appearance should be inspected to assure the absence of gross artifacts (e.g., blurring or bleeding of bright display areas into dark areas or aliasing of spatial resolution patterns). Display monitors used for primary interpretation should be tested at least monthly. As a dynamic range test, both the 5% and the 95% areas should be seen as distinct from the respective adjacent 0% and 100% areas."

AAPM 2004

Experience – CRT QC

- MDIS (Parsons & Kim, 1994)
 - -2k CRT L_{max} decayed 20% in 8 months
 - -L_{max} decay correlated with usage ("duty cycle")

10% failure rate (1 of 10) in a 9-month period.

-		

Experience – CRT QC

Baltimore VA (Siegel, 2000) - 2k CRT service logs (17 months)

- Average time to failure 1.7 years
- Average life expectancy 2.4 years
- 20 failures (10 replacements)

All passed the ACR test!

AAPM 200-

Experience – CRT QC

- Groth D, et al (2001), Mayo Clinic
- Ly CK, (2002), Texas Children's Hospital

AAPM 2004

AAPM TG18

Samei E, Badano A, Chakraborty D, Compton K,
Cornelius C, Corrigan K, Flynn MJ, Hemminger
B, Hangiandreou N, Johnson J, Moxley D,
Pavlicek W, Roehrig H, Rutz L, Shepard SJ,
Uzenoff R, Wang J, and Willis C, Assessment of
Display Performance for Medical Imaging
Systems. Draft report of the American Association
of Physicists in Medicine (AAPM) Task Group 18,
version 9.0, October 2002.

Performance Requirements

	ACR	AAPM
Geometric Distortion	No Gross Artifacts	< 2% variation
Reflection	Depends on L _{amb}	Depends on L _{amb}
Max. Luminance	L _{max} ≥ 50 ft-L (171 Cd/m ²)	$L_{max} \ge 170 \text{ Cd/m}^2$
Contrast	5% and 95% SMPTE visible	CR ≥ 250
Luminance Response	5% and 95% SMPTE visible	≤ 10% of GSDF
Luminance Uniformity	No Gross Artifacts	$\Delta L/L_{\rm avg} \leq 30\%$
Resolution	≥ 2.5 lp/mm	≥ 2.5 lp/mm
Noise	Not Specified	Solution
Veiling Glare	Not Specified	Glare Ratio > 400

Test Patterns

- TG-18 Test Patterns
 - Available in DICOM® format at : http://deckard.mc.duke.edu/~samei/tg18

for its standards publications relating to digital communications of medical information.

AAPM 2004

Procedures (All Class 1)

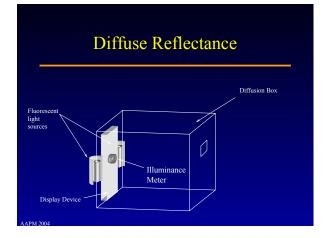
• TG18 - Assessment of Display Performance for Medical Imaging Systems

- Luminance Response

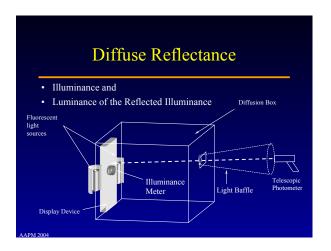
• Max Brightness & Contrast Ratio

- Luminance Uniformity

- Reflection


- Noise

Reflection


- Diffuse
- Specular

 $\label{eq:Used} Used \ to \ determine \ maximum \ tolerable \\ L_{amb} \ in \ reading \ room.$

AAPM 200

Instrumentation: Diffuse Reflectance Diffusion Box: • Matte white finish inside • 24" cube • Sight hole in back

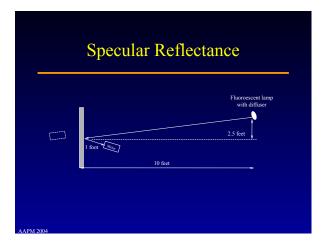
_	~			
R	etl	lec'	t17	٦n
\mathbf{I}	\mathbf{v}		ᄣ	

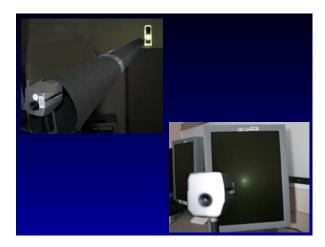
• Diffuse Reflectance:

 $R_D = \frac{\text{Luminance of reflected illuminance}}{\text{Illuminance of the display surface}}$

Diffuse Reflection & Ambient Lighting

Diffuse reflection effect on $L_{\mbox{\scriptsize min}}$ and contrast:


Monitor Illuminance (Room illumination, E)


 $E \le 0.25 L_{min}/R_D$

L_{min}		Maximum Room Illuminance (lux)					
(cd/m ²)	$R_d = 0.005$	$R_d = 0.010$	$R_d = 0.020$	$R_d = 0.040$	$R_d = 0.060$		
20	1000	500	250	125	83		
10	500	250	125	62	42		
4	200	100	50	25	17		
2	100	50	25	12	8		
1	50	25	12	6	4		

AAPM 2004

Specular Reflectance Fluoroscent lamp with diffiser

Reflection

• Specular Reflectance:

R_s =

Luminance of Reflected Image

Luminance of the Object

AAPM 200

Specular Reflection & Ambient Lighting

Specular reflection of white background objects:

Maximum tolerable room illumination:

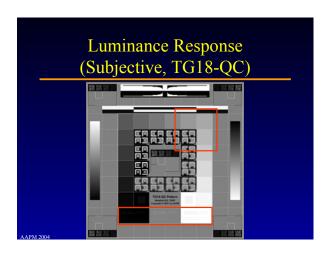
 $\mathbf{E} \leq \mathbf{\Pi} \mathbf{C}_{\mathrm{T}} \ \mathbf{L}_{\mathrm{min}} \ / \ \mathbf{0.9} \mathbf{R}_{\mathrm{S}},$

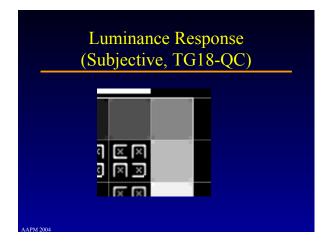
where $C_T = \Delta L/L$ @ L_{min}

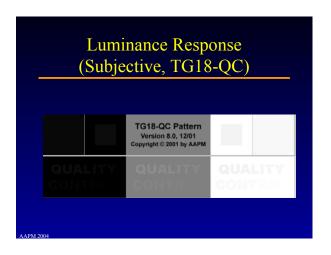
\perp_{max} L_{min}	C_t	Maximum Room Illuminance (lux)				
(cd/m^2)		$R_c = 0.002$	$R_c = 0.004$	$R_c = 0.008$	$R_s = 0.020$	$R_s = 0.040$
20	0.010	349	175	87	35	17
- 10	0.011	192	96	48	19	10
- 4	0.015	105	52	26	10	5
- 2	0.018	63	31	16	6	3
1	0.024	42	21	10	4	2

Luminance Response

- AAPM TG18-LN
 - 17 patterns, uniform 50% background with central 10% incrementally brighter from $L_{\rm min}$ to $L_{\rm max}$ in even steps.


- Room lights off (total darkness)
- Measure each step and compare to GSDF


AAPM 200-



Luminance Response

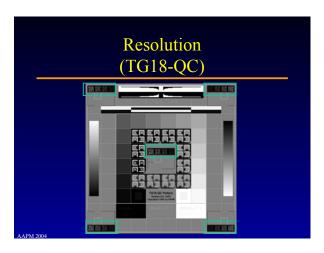
- $L_{max} > 170 \text{ Cd/m}^2$
- Response error $\leq 10\%$ of GSDF
- $C = L_{max}/L_{min} \ge 250$

Luminance Uniformity, Chromaticity & Glass Defects

- AAPM TG18-UNL80 and -UNL10
- Measure luminance in the center and 4 quadrants of two uniform test patterns.
 - 80% of L_{max}
 - -20% of L_{min}

Luminance Uniformity, Chromaticity & Glass Defects

• On each monitor, compare each reading to the average of all 5:


$$|L_i/L_{avg} - 1| \le 0.3$$

- · Color Matching (TG18-
 - Measure color with colo
 - Visually compare monit workstation
- Glass Defects

Res

- AAPM TG18-CX
- Match observed sharpness of small Cx patterns to simulated blur of large Cx patterns
- Passing score is ≤4

$-1 \le 0.3$		
-UNL80) r photometer or ors for matching color at each		
ord for madelining color at their		
olution		
olution Γ only)		
TOTACE Primer THE ACT OF THE ACT		
	<u></u>	
63 63 63 65	<u></u>	

Noise

- TG18-AFC
- Count # quadrants in which most squares show the corner object
- Passing score is ≥3

Procedures (CRT only)

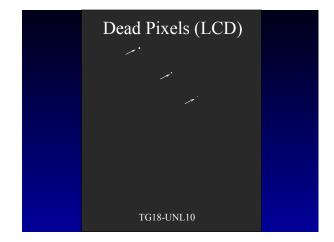
- Resolution
- Geometric Distortion
- Veiling Glare

Veiling glare (CRT only)

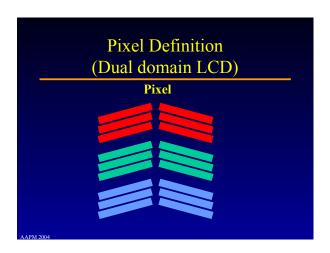
- Measure black level in center of all-black field (L_N)
- Measure white level in center of all-white field (L_B)
- Measure black level in center with surrounding at peak white (L)

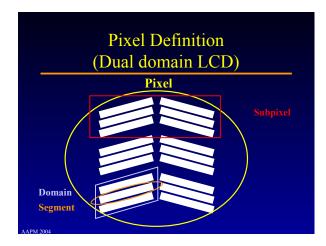
 L_{N}

Geometric Distortion (CRT only)

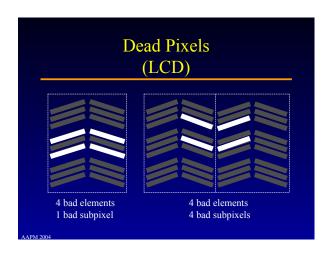

Veiling glare (CRT only)

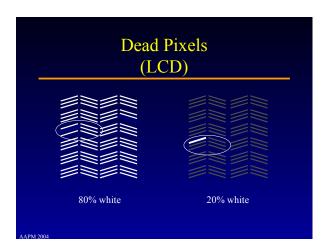
Calculate Glare Ratio:

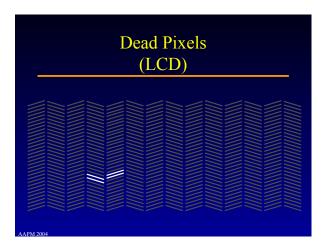

 $R_G = (L_B - L_N)/(L - L_N)$

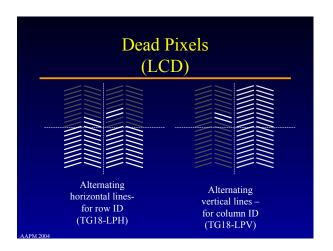

 R_G should exceed 400 (ideal is ∞).

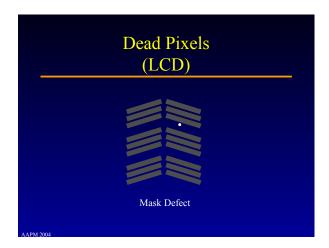
Procedures (LCD only) • Pixel Defects

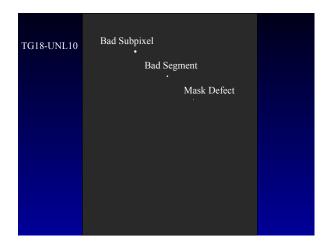





Dead Pixels (LCD)


Dead Pixel count (LCD)
 One bad segment in any subpixel is a "bad" subpixel
 Adjacent bad segments in different subpixels may be ok


APM 2004



Dead Pixels (LCD)

- Performance expectations vary by manufacturer
 - Total number of bad subpixels (≤ 15)
 - # Bad subpixels per "1-cm circle" (≤ 3)
 - Maximum # adjacent bad subpixels (≤ 3)

AAPM 2004

QC Program

- · Acceptance tests
- Annual tests
- · Monthly tests
- · Daily tests
 - LCD vs CRT
 - Performed "under the supervision of a Medical Physicist" by individuals who "develop and maintain familiarity with the tests".

AAPM 200

Acceptance Tests

- Reflection
- Quantitative Luminance Response
 - L_{max}, Contrast Ratio
- Ambient Lighting (Reflection and Min. Luminance)
- Luminance Uniformity, Chromaticity & Glass Defects
- Noise
- Pixel defects

Δ APM 200

-	_
-	

Acceptance Tests (CRT)

- Resolution
- Geometric Distortion
- Veiling Glare
- L_{min}

AAPM 200

Annual Tests

• Repeat all acceptance tests except reflection (reset ambient lighting to acceptance levels)

AAPM 2004

Monthly - Quarterly Tests

- Cleanliness (glass cleaner and soft cloth)
- Ambient Lighting (reset to acceptance)
- Subjective Luminance Uniformity, Chromaticity (matching monitors) & Glass Defects
- Pixel Defects

Monthly / Quarterly Tests

- Self-Calibrating Displays (Quarterly)
 - Subjective luminance response (TG18-QC)
 - $-\,L_{\text{max}}$ and L_{min}
 - -(Contrast ratio)
- Non Self-Calibrating Displays (Monthly)
 - Luminance response (measured)
 - -Contrast ratio

AAPM 200

Monthly / Quarterly Tests (CRT)

- Resolution
- Geometric Distortion

AAPM 200

Daily Tests

- Ambient Lighting (reset to acceptance)
- Subjective Luminance Response (TG18-QC)
- Cleaning (glass cleaner and soft cloth)

Performed by the user

AP	w	

Daily Tests (CRT)

- Resolution (TG18-QC)
- Subjective Geometric Distortion (TG18-QC)
- Subjective Luminance Response (TG18-QC, "Quality Control")

AAPM 200-

Experience – LCD QC

Henry Ford Hospital

(Mike Flynn and Don Peck – verbal communication)

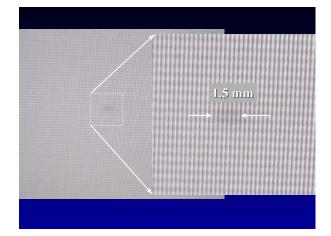
- Acceptance
 - 11 of 80 returned for debris in glass (black artifact) and repaired
 - Some dead pixels, but acceptable
- Annuals None to date

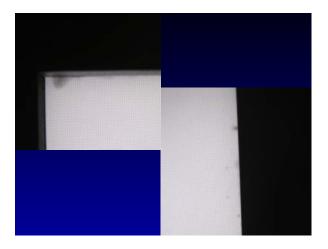
AAPM 200

Experience – LCD QC

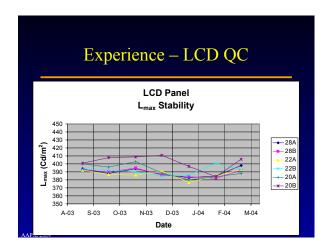
UT M. D. Anderson Cancer Center

- OEM's self-calibration proved to be stable over several weeks (Thompson, et al, 2003).
- Acceptance tests on 101 3Mp LCD displays
 - 6 panel failures
 - 2 for color mismatch
 - 3 for uniformity artifacts (acceptable after repair)
 - 1 physically damaged (scratched)
 - 3 bad graphics cards (DOA)


LΔ	PM	200	d


-	
<u>j</u>	

Experience – LCD QC


- Annual tests on 30 panels (to date)
 - -2 failures
 - 1 for a single point pixel defect
 - 1 for artifacts around edges
 - $\mbox{No change in L_{max}, L_{min} or calibration } \\ LUT$

AAPM 200-

-	
	_

			E	\mathbf{X}	pe	ri	ieı	10	ce -	_ :	L(CI)	Q	C	1	
APA TO CONTROL Making Grown Filters					Dia	gn	osti	c N	Monit	tor S	Sent	ine	l				Remo
Detair			- 3	-h	el I							-color	40				status
Teacrite	BI .	Set Water	Measure! Water beauty	ain.	Signal Sea	Pad	Core	Date	101	Get White	Measured Wate level	10	Signed Tear	Faul Tree	Dave Level	Date	
Dat of Meanwe		1-6/m2	1462	am	Hires.	DelC	Ni.			1862	n disc	100	Tions:	DelC	Ni.		monit
EUCHORDI .	A21-04267	423	CFF	10	1511	4	- 17	387	CHARLES	100	SEE	To	1111	24	0.07	287	elimir
ADVERSOR	AMERICA	400	CFF	1145	1127	12.7	SEF	CET	ATEGER	400	CFF	0 143	1111	11	OFF	CET	
THE PERSON	A Tel cooks	400	CFT		1143		087	CEF	ABLISTIN	400	1009		564	21.1	055	CEF	need f
Manager III	ADDITION	400	400	0.003	13	13.5	54.1	COL	A756-11113	400	399	0.063	718		МI	CBI	1.21
APPORTORES	130-1224	430	OFE		123	11	155	CFF	ABLING	410	CEF	0	un	23	OFF	OFF	daily
ADMINISTRAÇÃ	A31 - 1111	400	COT		111		CEP	CET	ATE-00025	400	009	1,004	ш	11.5	CIT	CET	
AUWHEN	130-30HZ	400	CEE	1	343	30.5	CET	OEF	A30-1003	400	CEF	0.384	340	31	OFF	CEF	
ADWIELD III	ATE-00121	400	400	5 54	1794	34.5	4.0	CBE	ATE-ONE	410		0.072	1792	32	0.1	CBI	
LADWING THE	ATE-REST!	400	CFF	0311	11.72	11	CF2	CFF	ASE GEVIA	400	009	111	2002		GIT	CEF	
LADVETES #1-15	AUE-HEVET	400	400	0 N	1115	36.5	56.7	OFF	ATE-USA	403	399	0.067	1136	Ж	912	CH	
LADWING THE	130-7018	400	087	274	111	10.5	C87	007	A30-1021	400	C87	0	91.1	29.1	007	089	
ADVITED BY	AU-DOO	477	CEF	0.048	(0)	35.5	067	OEE	A37-39541	411	OFF		654	25	OFF	CET	
ADVISION IN	a III-aeroo	400	CFT		467	11	CEF	OFF	ATE-DEVIA	400	009	0	445	M	OFF	OFF.	
ALWEST A	ATE-0253	400	CEF		1257		:FF	097	ATE COST	411	CFF		1297	35	077	OFF.	
ADWIRBINS	ATE-NETTE	400	077	1905	1249	11	CEF	CFF	A1E-SEIGH	400	069	010	101	23	OTT	CFF	
ADWITTER	AUT-07971	400	CFF		2511	12.5	CEF	177	A217-00073	400	CEF	0143	3439	R	OFF	CEF	
ADWITTER?	ALC: DOZ.	à T	CFT	1	THE		.17	CET	ANGLE ME	415	CFT	0	12:50	21	027	CFF	
ADVESTIGATION	A.TE-0000	400	CFF	1194	[74]		OFF	OFF	ATE-OFFICE	400	CFF	010	1540	11	OFF	CET	
MUNICIPAL	a IE-strive	400	0.01	0.313	1716		082	CET	All-citti	400	CES		1736	31	CET	CER	
DADWINSTON	ATL COST	400	CFF	127	1104	33.5	CER	100	ATE CITY	400	CEF	9 947	2290	H	097	CEF	

Experience – LCD QC

- No need for resolution, geometric distortion, or veiling glare *EVER!*
- Self-calibrating displays
 - Verify stability
 - over the course of a day
 - daily over the course of several months
 - Eliminates need for quantitative luminance response test except annually
 - Use quarterly subjective tests to identify graphics card failures.

Acknowlegement

- Raimund Polman (PACS Programmer/Analyst)
 - Diagnostic Monitor Sentinel (SNMP Client/Server)
- Tyran Mercer (PACS Research Technologist)
 - Acceptance test data
 - LCD artifact images
- David Clayton, BSRT (QC Dosimetrist) & Blake Cannon, BS (Graduate Student)
 - Monthly QC data

APM 2004

Bibliography

- RES. 11, American College of Radiology (ACR) Standards for Teleradiology, Standards and Accreditation Committee, ACR, 2002, http://www.acr.org/departments/stand_accred/standards/pdf/teleradiology.pdf, accessed May 17, 2004.
- RES. 6, American College of Radiology (ACR) Technical Standard for Digital Image Data Management, Standards and Accreditation Committee, ACR, 2001,
 - $\underline{\text{http://www.acr.org/departments/stand_accred/standards/pdf/teleradiology.pdf,}} \ accessed \ May \ 17, 2004.$
- Samei E, Badano A, Chakraborty D, Compton K, Cornelius C, Corrigan K, Flynn MJ, Hemminger B, Hangiandreou N, Johnson J, Moxley D, Pavlicek W, Roehrig H, Rutz L, Shepard SJ, Uzenoff R, Wang J, and Willis C, Assessment of Display Performance for Medical Imaging Systems, Draft report of the American Association of Physicists in Medicine (AAPM) Task Group 18, Version 9, October 2002, http://deckard.mc.duke.edu/~samei/tg18

AAPM 2004

Bibliography

- NEMA PS 3.14, Digital Imaging and Communications in Medicine (DICOM)
 Part 144: Greyscale Standard Display Function. National Electrical
 Manufacturer's Association (NEMA), Rosslyn, VA, 2000,
 (http://www.nema.org)
- Honeyman JC, Frost NM, Staab EV. Initial Experience with PACS in a Clinical and Research Environment. SPIE Medical Imaging V, San Jose, CA, February 1991.
- Parsons DM, Kim Y. Quality Control Assessment for the Medical Diagnostic Assessment Support (MDIS) System's Display Monitors. SPIE Medical Imaging 2164: 186-197, 1994.
- Seigel EL, Reiner BI, Cadogan M. Frequency and Impact of High-Resolution Monitor Failure in a Filmless Imaging Department. J Digit Imaging 13(3):114-118, 2000.

Bibliography

- Groth D, Bernatz S, Fetterly K, Hangiandreou N, Cathode Ray Tube Quality Control and Acceptance Testing Program: Initial Results for Clinical PACS Displays. Radiographics (21) 2001, pp 719-732.
- Ly CK, Softcopy Display Quality Assurance Program at Texas Children's Hospital, J Digit Imaging 15 Suppl 1, 2002 pp 33-40.
- Compton K, Factors Affecting Cathode Ray Tube Display Performance, J Digit Imaging, 14 (2) June 2001, pp 99-106.
- Samei E, Shepard SJ, Fetterly KA, Kim HJ, Roehrig H, Flynn MJ, Clinical verification of TG18 methodology for display quality evaluation. Proceedings of SPIE 5029 (2003), pp 484 – 492.
- Roehrig H, Willis CE, and Damento MA. Characterization of Monochrome CRT Display Systems in the Field. J Digit Imaging 12(4):152-165, 1999.

A APM 2004

Bibliography

- Thompson SK, Willis CE, Polman R, and Homann KI, Validation of a Self-Calibrating Active-Matrix Liquid Crystal Display System. J Digit Imaging 16 (Suppl 1) 2003, pp 19-21.
- SMPTE RP133, Specifications for Medical Diagnostic Imaging Test Pattern for Television Monitors and Hardcopy Recording Cameras, Society of Motion Picture and Television Engineers (SMPTE), White Plains, NY, 1991.