An Overview of Digital Imaging Systems for Radiography and Fluoroscopy

Michael Yester, Ph.D.

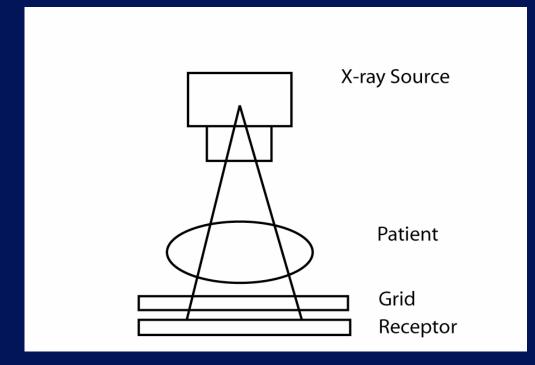
University of Alabama at Birmingham

Outline

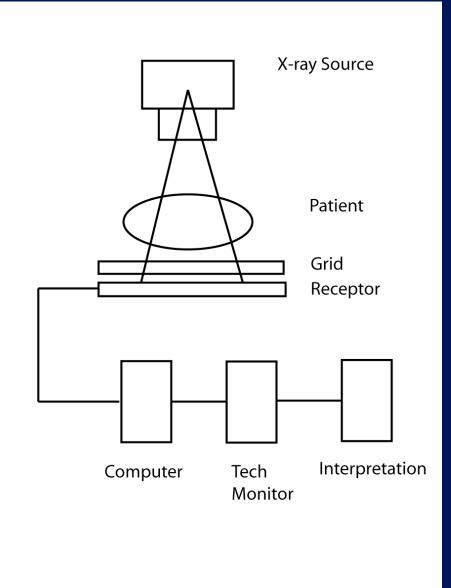
- Introduction
- Imaging Considerations
- Receptor Properties
- General Classification and Description of Systems
- System Considerations
- Conclusion

Introduction

- Starting Specific Technical presentations
- Presentations on Imaging characteristics involved a number of factors; serve as a basis for comparing systems
- Specifics covered in the following section
- General considerations that apply to all DR systems
- Illustrate points to consider as the specifics are given


Fluoroscopy

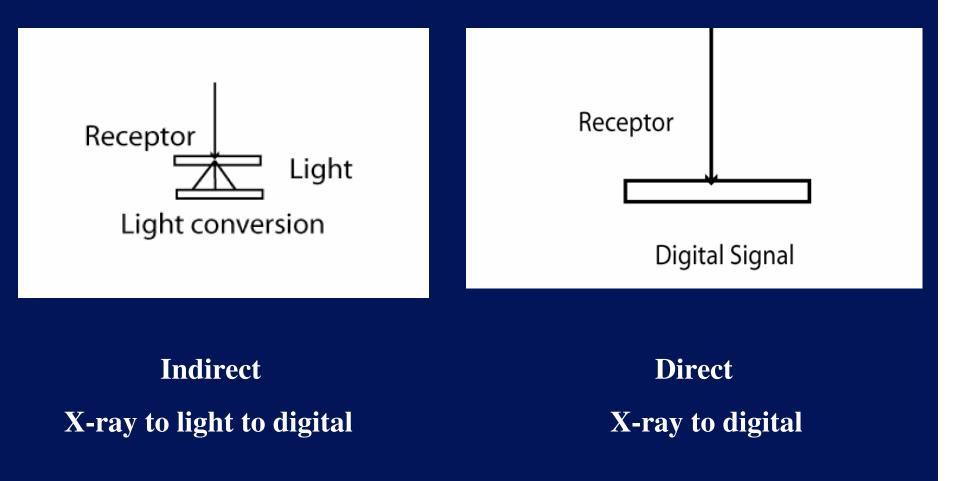
- Fluoroscopy is expected to remain in its current state for some time, and employment of flat panel digital receptors is expected to lag
- There are some fundamental issues and the big push is in angiography
- Rest of talk will concentrate on Digital Radiography


Digital Radiography

• Consideration of the image flow will illustrate the important considerations relating to discussions of DR

General Schematic

With DR


System for DR

- The main change in DR systems is in the receptor
- System characteristics then become related to the receptor
- System => workflow
 - issues are related to the receptor in different ways

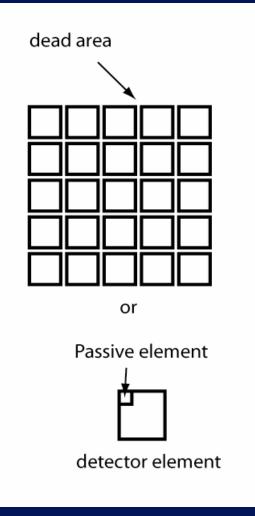
Important considerations

- Receptor
 - Type
 - Imaging characteristics
 - Related parameters
- System
 - Given receptor may affect system integration
- Dose
- Testing and Quality Control

General Classification of Receptors

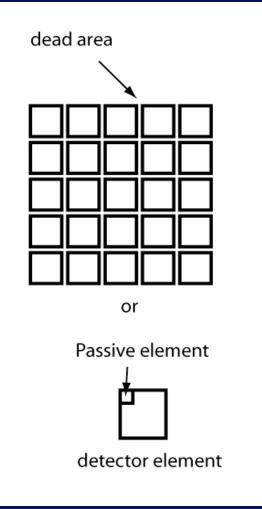
Specific Parameters of Interest

First considerations of a receptor will involve


- Spatial resolution
 - MTF
- Contrast
 - CNR
- Dose Efficiency
 - DQE

Receptor Properties

- Fill factor
 - Percentage of detector area that is active
- x-ray absorption efficiency
 - Material properties
- Dark noise
 - Signal without radiation
- Uniformity
 - Pixel response and readout, receptor response, tiling
- Readout issues


Fill Factor

- There can be a dead zone between elements
- there can be an area that is part of an element that is not active

Spatial Resolution

- Related to pixel size
- Pixel size related to detector elements
- Fill factor can be a factor
 - dead or passive element size in general is fixed, so as pixel size decreases ratio of dead area to active area increases
- Resolution and efficiency can be related

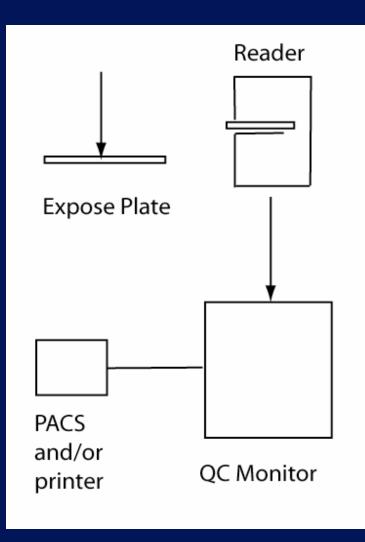
Absorption

- Z and density are factors
- K-absorption edge
- Crystalline properties
 - Powder versus "needles"
 - Thickness -- which will relate also to spatial resolution
- For indirect type of receptor, light emission spectrum can be important
- Direct effect on DQE

Electronic Noise

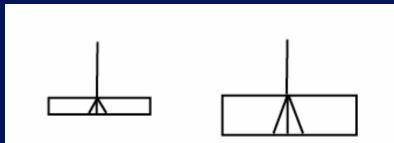
- Dark noise contribution
- Signal present in absence of radiation
- Signal subtracted out from raw image, but contributes to total system noise

Uniformity


- Natural uniformity of the material and non-uniformity of response
- Readout -- amplifier gain
- Tiling
- Uniformity may be a function of kVp
- Dead pixels
- Corrections can be made but add to overall system noise

Classifications of Detector Systems

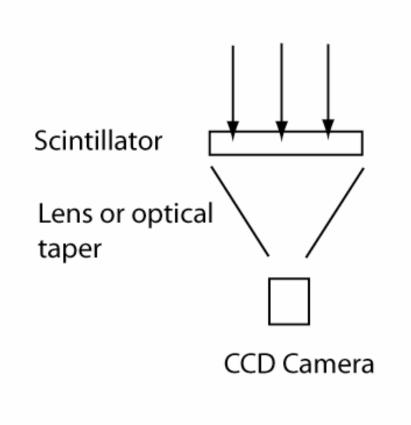
- CR
- CCD
- Flat Panel



- Flexible imaging plates using photostimulable phosphors
- Direct replacement for film
- Cost effective means for digital imaging

CR

- Entire plate is active
- X-ray absorption limited by material
 - (Barium)
- Plate consists of powder + binder
 - thickness, spatial resolution issue
- Uniformity
 - consistency of powder layer
 - readout
 - mechanical forces



CR Issues

- Especially valuable for portable x-ray work
- Efficiency of operation (like film)
 - There are integrated CR systems (x-ray system plus reader) but adds to expense
- Low DQE
- Work ongoing on different phosphors

CCD based systems

- Indirect type of digital system
- CCD familiar from use in digital cameras
- CCD chip size of the order of 5 cm x 5 cm maximum
- Readout is "bucket brigade"

- Typical CCD cameras operate in array mode (full frame)
- Entire area is active
- Uniformity
 - pixel defects, response over the surface, and optics issues
- Dark current has to be accounted for

CCD Issues

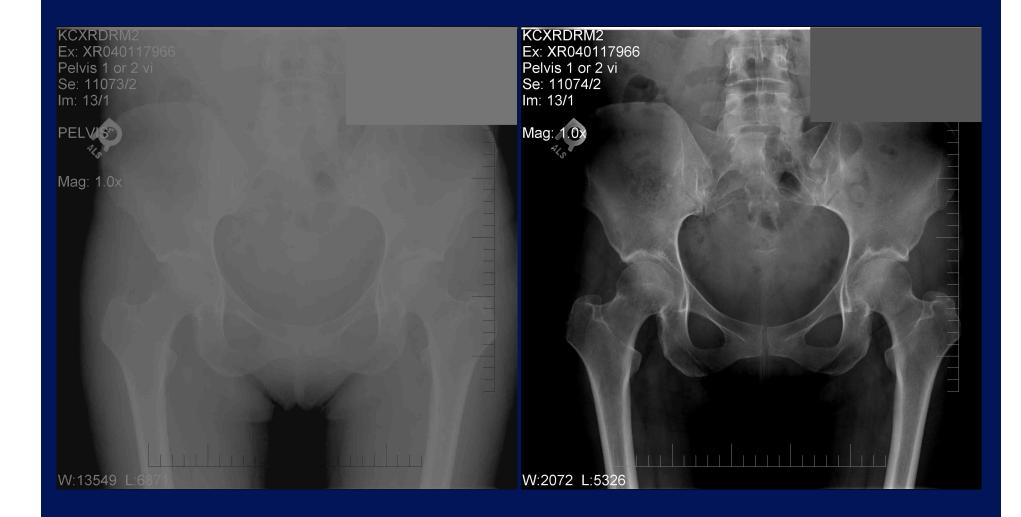
- Size is a major issue
 - Demagnification reduces detection efficiency (loss in light transfer)
 - Can tile CCDs to form a larger imaging area with subsequent uniformity issues
 - DQE higher than CR, CsI commonly used as scintillator
- Modularity -- can change out camera and upgrade systems
- Note: CMOS based systems are used in some instances, similar issues as with CCD

Flat Panel + TFT

- Detector system as a unit in place of Bucky
- Scintillator in contact with thin film transistor array (Indirect), or
- Direct -- electron-hole pairs created in receptor (selenium), readout with TFT array
- High DQE

Flat Panel

- Uniformity -- dead pixels, scintillator or receptor uniformity, pixel gain
- Absorption efficiency
 - Indirect -- CsI common, relatively high efficiency
 - Direct -- selenium less efficient, especially at higher kVps
- Spatial resolution -- primarily dominated by sampling and fill factor
- Readout -- has to be reset before next exposure, selenium has been somewhat more difficult to work with


Flat Panel Issues

- Expensive -- integrated module
- Large field-of-view
- Ghosting -- residual image

Systems

- Image formed by the devices discussed are initially in raw format
- Apply processing
 - Flat-field correction
 - Dark current correction
 - Mapping of digital to display values (contrast)
 - Edge enhancement
 - Final window/level set

Example

System Issues

- Processing takes some time
- Added work for technologist
- But retake for image density no longer a problem
 - Note: poor radiographic technique (kVp) can not be overcome to create perfect image
- Big issue relates to time required for Radiologist interpretation

Workflow

- Thus necessary to optimize processing parameters for each different exam so that image is readily viewable by the radiologist
- Order of exams taken matched to PACS or with appropriate identifiers for "hanging protocols"
- (Remember the gold standard is a motorized multiviewer with films pre-loaded by an assistant)
- Also Radiologists want images to look like film

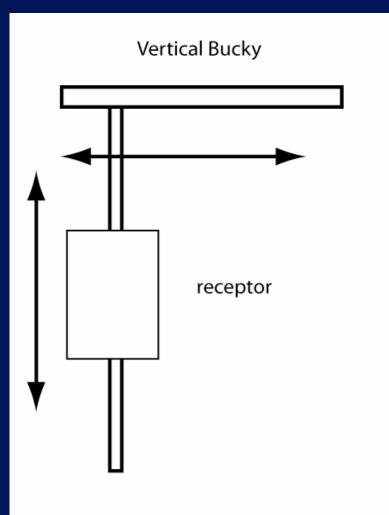
Workflow

- PACS becomes a major consideration
 - Dicom Worklist
 - send
 - archive

Systems and Workflow

- CR has a major advantage of being used for all views that may be desired (obliques, laterals, etc.)
 - But, CR does require a number of steps like film
- For DR system integration can be more problematical

DR Configuration


- A standard configuration may be a table Bucky and a wall Bucky, but then this will dramatically increase the expense of the system (two digital receptors)
- In addition, cross table laterals would imply CR

DR System Designs

- Use of CR with DR will in general impede workflow
 - have to register a patient, select the exam on a different system
- Philips offers an integration of its CR with a fixed table based DR
- In this manner patient registration is performed only once
- Other systems may permit integration of CR images into DR system

Variation of Traditional two detector system

- Quantum Medical + CMT
- Two plates
 - Table Bucky
 - Vertical Bucky
- but wall Bucky on a track and can be moved to position for cross table lateral lateral
- Vertical Bucky can perform upright and sitting views (horizontal)

Other System Designs

- Single plate system capable of multiple motions
- Several different flavors
 - Fixed table and fixed column with articulating arms
 - vertical work, table work (AP, lateral)
 - Fixed table articulating arms and receptor on a track
 - Moving stretcher and flat panel on a rotating arm
 - Computerized gantry, position anywhere within an area

System Design Example

- Moving stretcher and rotating plate
- Upright and table views
- Moving stretcher not favored by some technologists

b. With Imaging Stretcher

System Design

- Canon has tethered flat panel
- Robustly constructed plate with cable attached to electronics
- Placed in table Bucky, or
- Placed in lateral cassette holder, or
- Placed in vertical Bucky

System Configuration

- Obviously different solutions
- Different factors
 - Cost
 - Table (moving or fixed)
 - Ease of positioning
 - Work environment (general or ER)

- AEC still employed
- CR -- will need to consider photocell setting and processing to account for lower efficiency of CR
- Vendors may calibrate system in terms of Speed relative to film/screen combination
 - Note: This may not match the speed of the system you have been using
- Conventional AEC vs using area of digital detector itself

- What is a proper exposure?
- Noise is an issue
- No longer have a density reference due to large dynamic range of digital receptors

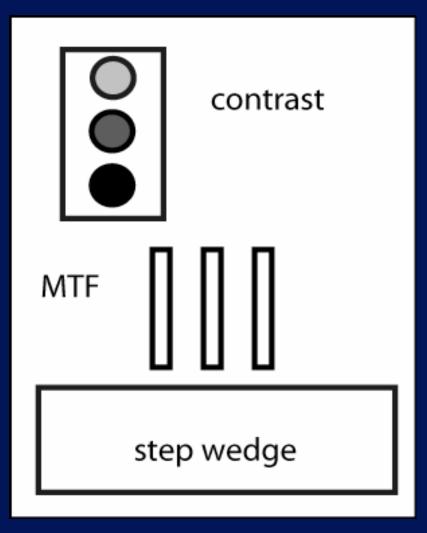
- Dose Index?
- CR -- each manufacturer has a different index that is calculated for each exposure
 - Keep within a defined range and theoretically will have proper exposure and an acceptable dose
 Welves printed on film
 - Values printed on film
- DR -- relative exists and can be incorporated into DICOM Header, not generally displayed
- Histogram may be available showing digital range, but may not be easily viewable

- Dose will be quite dependent on efficiency of detector system and processing
- Dose Creep can occur easily
 - Dose creep -- exposure may creep to a higher level without notice (no optical density reference)
 - Note: lower dose would be evident by noise level

Quality Control

- Previously QC involved processor, film storage, changes in emulsion or chemistry
- Digital system adds different complexity
 - Uniformity
 - Spatial resolution
 - Contrast
 - Dynamic range (noise)
- Acceptance testing will incorporate the above in greater detail as well as initial setup of processing and doses

Quality Control -- CR


- Uniform sensitivity of plates
- Plate uniformity (wear and tear)
- **Resolution (proper operation of reader)**
- Standard readout across different readers

Quality Control (DR)

- Uniformity -- dead pixels
- Contrast/Noise
- Spatial resolution
- Since all of the above depend on the receptor, need to monitor for possible changes

Routine QC Example

- Simple Phantom
- GE and others have a phantom that is used
- Acquire an image with a set block of Aluminum
 - Uniformity
- Acquire image of phantom that slips into the grid slot
- Number of objects to test the system
- Pass/fail report

QC Display Monitor

- Technologists monitor needs to be calibrated to similar display characteristics as PACS
- Difficult to do as tech monitors are of lower quality

Conclusion

- Availability of digital radiography will only increase
- Due to expense, configuration important
- Maintaining high quality and workflow efficiency brings new challenges
- Details to be covered in next set of presentations