AbstractID: 2515 Title: Dosimetric Properties of Photon Beams from a Flattening Filter Free Clinical Accelerator

Purpose: Investigation of the basic dosimetric properties of $6-\mathrm{MV}$ and $18-\mathrm{MV}$ photon beams, generated by a clinical accelerator, without the flattening filter. Comparison with flattened beams. Exploration of potential benefits of using nonflattened beams in radiation therapy. Application of a flattening filter free accelerator in intensity modulated radiation treatments.

Methods and Materials: In a Varian Clinac 2100 accelerator the flatting filter was removed from the beamline. Dosimetric properties of 6-MV and 18-MV photon beams were measured using ionization chambers and radiographic films.

Results: As a result of removing the flattening filter: (1) the dose rate on the central axis increases by factors of 2.3 (6-MV) and 5.5 (18-MV), in $10 \times 10 \mathrm{~cm}^{2}$ fields at the depth of 10 cm ; (2) the penumbra width decreases by $4-5 \%$ ($6-\mathrm{MV}$) and $8-20 \%$ ($18-\mathrm{MV}$) at small depths; (3) out of field dose close to the treatment field edge decreases by $15 \%(6-\mathrm{MV}), 30-40 \%(18-\mathrm{MV})$ and tends to decrease more, farther away from the field; (4) the total scatter factor varies less with the field size; (5) multileaf collimator transmission decreases by $20 \%(6-\mathrm{MV})$ and $10 \%(18-\mathrm{MV})$; (6) dose per monitor unit increases to $2.15 \mathrm{cGy}(6-\mathrm{MV})$ and 3.81 cGy ($18-\mathrm{MV}$), according to the TG51 protocol; (7) the energy spectra of the nonflattened beams become softer, especially on the central axis; (8) dose close to the surface increases; (9) the ratio of dose on the central axis to that at 80% of field width (for 4×4 to 40×40 fields) increases to 1.1-1.7 (6MV) and 1.2-3.2 (18-MV); (10) shapes of 6-MV lateral profiles change less with depth.

Conclusion: With the flattening filter free accelerator potentially better treatments can be developed, characterized by substantially shorter delivery times, sharper penumbras, and reduced out of field doses.

Conflict of Interest: Research is supported by Varian Medical Systems

