Whole Breast Radiotherapy

- Whole breast RT following lumpectomy has an important role in the treatment of early stage breast cancer.
- Potential side effects:
 - Acute: painful erythema & desquamation
 - Chronic: hyper-pigmentation, fibrosis, fat necrosis, pain
- The incidence and severity of side effects is managed by minimizing “hot spots”

Goals of IMRT for Breast Cancer

- Optimize dose homogeneity, avoid unnecessary normal tissue irradiation and standardize target volume
- Determine if simple IMRT can be used practically and reproducibly in the clinic
- Precursor to more advanced IMRT applications:
 - Breast + IM-node irradiation
 - Quadrant irradiation

IMRT Process

- Simulation
- Treatment Planning
- Treatment Delivery
- Quality Assurance
Initial Simulation

- Immobilization: alpha-cradle
- Position arms above head, keeping elbows tucked in
- Treatment side of the cradle is compressed to avoid interference with the lateral tangent setup and SSD readings

CT Scan

- Position patient level and straighten on the table using the midline, level marks, and the marks on the cradle
- Place a "b.b." on midline, if the medial wire placed by physician is not located on the midline

Initial Simulation

- Position the patient level and straighten under fluoroscopy
- Level marks (tattoos) are made on each side of the patient at about 5 cm below xiphoid with the lateral lasers
- Tattoos at ~10 cm off the tabletop

CT Scan

- Patient should be in the center of the table, unless the affected breast is too large
- If the treatment site is not in the field of view, move the patient off-center to assure a complete scan of the affected breast
CT Scan

- Acquire a scout view of the entire chest, start superiorly from the chin and end inferiorly below the leveling marks.
- Image set should include above and below the 1st and 12th thoracic rib respectively.
- Set center of the field (zero slice) in middle of the breast, between catheters placed by physician.
- Scan the central axis slice; check for straightness and rotation.

Virtual Simulation

- Virtual CT simulation in the standard treatment position
- Treating physician places radio-opaque markers at the clinical borders of the ipsilateral breast tissue

Virtual Simulation

- During treatment planning: the superior, inferior, and deep edges of the unopposed tangential beams are aligned with the radio-opaque markers

Treatment Planning

- Contour
- Beam alignment
- Beam weight
- IMRT plan
Delineate Lumpectomy Cavity

Tangent Beam Alignment
- Align tangential beams to coincide with radio-opaque markers
- 2 cm anterior fall off
- 1.5 cm - 2 cm depth into lung

SKIN, LUNG, and BREAST
- Contour skin and lung
- Create breast contour through contraction tool

CONTOURS - Skin & Lung
- Auto contour skin and lung
- Lung
 - lower threshold 150
 - upper threshold 800
CONTOURS - Beam Edge

- Contour the tangential beam edge to create a “Dummy ROI”

CONTOURS - Breast

- Create breast contour through contraction tool
 - Skin source ROI
 - Lung and dummy limiting ROI
- Edit breast contour along heart

CONTOURS - PTV_eval

- Create PTV_EVAL by contracting BREAST ROI by 5mm

Beam Weight

- Open field plan is created
- Heterogeneity correction is utilized
- Beams are weighted to a normalization point 1 cm anterior to the chestwall
Regions of Interest

Dose Segment - ROI

Beam Segments - Open Field

BEV: Block to Lung
MLC Segments

- Calculate an isodose distribution for a pair of open tangential fields (no blocks or wedges)
- Subdivide medial and lateral beams into MLC segments; conform to isodose lines, in 5% increments, i.e., 120%, 115%, 110%, 105% ...

BEV: Dose ROI

BEV: Block to Dose ROI

MLC Segments

- Open Field
- Lung Block
- Multiple Segments
IMRT: Optimization

- Minimum dose of 45 Gy in 1.8 Gy fractions
- IMRT is used to achieve dose uniformity:
 - Less than 15% of breast volume should receive > 105%
 - Less than 2% of breast volume should receive > 110%
 - Maximum 10% of one lung can exceed 30 Gy

MLC Segment Optimization

- Beam weights optimized to deliver an equal dose to a volume (1.8Gy x 25 = 45Gy)
- Typically, > 80% of dose is delivered with the open fields
- If segments deliver less than 2 monitor units, delete and re-optimize weights
- Whole breast IMRT usually requires 6 to 8 total beam segments

Pan Evaluation

- Dose uniformity is achieved throughout the treatment volume
- <15% of breast volume receives >105% of the prescribed dose
- <2% of breast volume receives >110% of the prescribed dose
Isodose Distribution

Inframammary Fold

Sagittal View

Treatment Delivery

- Treatment time (~10 minutes) is not increased compared to conventional techniques
- Electronic portal images of medial and lateral daily
- Image acquired during first few monitor units of open segment
Quality Assurance

- Hand calculation at isocenter
- Central axis diode measurement
- Daily electronic portal verification
- Segment review
- MapCheck measurements

July 26, 2005
LAB - AAPM 2005

MU hand calculation

Simple IMRT cases:
- MU hand calculation still possible
 Modulation factor (MF)
 \(MF = \sum_{i=0}^{\text{all open}} \frac{F_i}{F} \)

July 26, 2005
LAB - AAPM 2005

Quality Assurance

- IVD Dosimeter
 - Sun Nuclear Corporation
- Calculate given dose
 - measurements made first day of treatment
 - compared to calculated value

July 26, 2005
LAB - AAPM 2005

Routine IMRT QA at WBH

Individual beam approach:
- Absolute dose measurements
 - MapCheck from Sun Nuclear
 - Tolerance: 3%
- 2D dosimetry
 - MapCheck from Sun Nuclear
 - Pinnacle planar dose tool (1mm resolution)
 - Tolerances used with MapCheck: 3% and 2 mm of distance to agreement

July 26, 2005
LAB - AAPM 2005
 SPD and SSD must be specified carefully for Mapcheck.

MapCheck software

MapCheck measurement

Head and neck beam example

Pinnacle dose map

Comparison window

July 26, 2005

LAB - AAPM 2005

Summary: Whole Breast IMRT

- Whole breast IMRT achieves more uniform dose distribution compared to conventional methods
- IMRT treatment planning adds 30 minutes to CT/virtual simulation (~2hrs total planning time)
- Treatment time (~10 minutes) is not increased compared to conventional techniques
- Dosimetric and organ motion studies confirmed that the necessary dose conformity can be achieved clinically with current IMRT technologies

References

Thank You