AbstractID: 2967 Title: Dosimetry Comparison of LDR ¹³⁷Cs and LDR ²⁵²Cf Brachytherapy Sources

Purpose:

Hundreds of patients have received gynecological brachytherapy treatments in the US using applicator tube-type (AT) low dose rate (LDR)²⁵²Cf sources. However, its mixed-field radiation dose distributions have not been characterized using the AAPM Task Group 43 dosimetry formalism, nor quantitatively compared to conventional photon-emitting sources. Towards clinical implementation of LDR ²⁵²Cf brachytherapy for gynecological applications, the mixed-field dosimetry for this source type has been modeled using Monte Carlo methods and compared to dose distributions produced by LDR ¹³⁷Cs brachytherapy sources.

Method and Materials:

Mixed-field dose distributions in the vicinity of an AT LDR ²⁵²Cf brachytherapy source were calculated using MCNP5 in a 50 cm diameter spherical phantom composed of water, soft tissue, and muscle. ENDF ²⁵²Cf neutron energy spectrum was used. Published ²⁵²Cf photon energy spectra were employed and compared. The MCNP F4 and F6 calculation tallies were utilized for determining various dosimetric components. These include the source photon, neutron capture photon, fast neutron, and thermal neutron dose components. The LDR ¹³⁷Cs source used for comparison was the 3M Model 6500.

Results:

Brachytherapy dosimetry parameters for LDR ²⁵²Cf neutrons were in agreement with previously published values. TG-43 dosimetry parameters for ²⁵²Cf photons exhibited a maximum g(r) value at 10 cm due to induction of capture photons in the phantom and a general decrease in anisotropy with increasing radial distance. ²⁵²Cf photon spectra including estimates of delayed photons exhibited – 2% difference in g(r) and 5% relative variation in anisotropy at $\theta = 0^{\circ}$. Dose distributions generated from dosimetry parameters for LDR AT ²⁵²Cf were similar to those produced by conventional ¹³⁷Cs sources using the Pinnacle³ Planning System.

Conclusion:

Using appropriate radiobiological weighting for ²⁵²Cf neutrons, treatment planning for AT LDR ²⁵²Cf sources may be performed and compared to conventional ¹³⁷Cs dosimetry for gynecological applications.