AbstractID: 3104 Title: Squared Contrast-Noise Ratio Per Dose and Rh-filter Thickness for Digital Mammography

Purpose: Increase detection sensitivity of breast carcinoma is greatly needed for digital mammography. We show that the tissue-lesion contrast-noise ratio (CNR) at a given dose level can be improved by increasing the Rh-filter thickness used for the Rh-target in digital mammography.
Method and materials: Currently a $25 \mu \mathrm{~m}$-Rh filtration is the standard in digital mammography for all the modes with a Rh-target. To test if this standard filter-thickness is optimal, we studied how the contrast-noise ratio between breast and infiltrating ductal carcinoma (IDC) of 5mm-size embedded a 6 cm -thick breast changes with Rh-filter thickness for Rh-target. We performed imaging experiments by modifying the filter wheel of a GE Senographe 2000D unit with Rh-filters of $25 \mu \mathrm{~m}, 37 \mu \mathrm{~m}, 50 \mu \mathrm{~m}, 62 \mu \mathrm{~m}$ and $75 \mu \mathrm{~m}$. Before imaging a phantom the x-ray HVL values at 29 kVp and radiation outputs were measured for each Rh-filter thickness ranging from $25 \mu \mathrm{~m}$ to $75 \mu \mathrm{~m}$. A $50 \%$ glandular and $50 \%$-adipose breast phantom of 6 cm with an infiltrating ductal carcinoma (IDC)-simulating insert of 5 mm in size was used as the phantom for all the cases. The CNR's between the breast phantom and the IDC-insert were measured, and average glandular doses were calculated by using a filtration-dependent x-ray spectra model and a breast-dosimetry model based on a validated Monte Carlo simulation. The exposure times were recorded as well.
Results: In contrast to conventional wisdom, the tissue-lesion CNR at a given dose level increases with increasing Rh-filter thickness from $25 \mu \mathrm{~m}$ to $75 \mu \mathrm{~m}$. The measured squared CNR per dose were increased by $7 \%, 13 \%, 18 \%$ and $21 \%$ for $37 \mu \mathrm{~m}, 50 \mu \mathrm{~m}, 62 \mu \mathrm{~m}$ and $75 \mu \mathrm{~m}$ Rh-filters compared to that for the standard $25 \mu \mathrm{~m}$ Rh-filter, respectively.
Conclusions: Increasing Rh-filter thickness for Rh-target from $25 \mu \mathrm{~m}$ to $50 \mu \mathrm{~m}$ can increase tissue-lesion squared CNR per dose by $13 \%$ with a tolerable increase of exposure duration.

