Overview of Digital Detector Technology

J. Anthony Seibert, Ph.D.
Department of Radiology
University of California, Davis

Disclosure

- Member (uncompensated)
 - Barco-Voxar Medical Advisory Board
 - ALARA (CR manufacturer) Advisory Board

Learning Objectives

- Describe digital versus screen-film acquisition
- Introduce digital detector technologies
- Compare cassette and cassette-less operation in terms of resolution, efficiency, noise
- Describe new acquisition & processing techniques
- Discuss PACS/RIS interfaces and features

Analog versus digital detectors

- Analog
 - Coupled acquisition and display
 - Higher resolution
 - Limited dynamic range, fixed detector contrast
 - Immediate exposure feedback
- Digital
 - Separated acquisition and display
 - Lower resolution
 - Higher dynamic range and noise-limited contrast
 - Proper exposure potentially hidden

Image Processing Crucial for optimal image presentation Flexibility adds potential advantage Disease-specific image processing Computer aided detection

Digital System Technologies Projection Radiography Computed Radiography (CR) CCD CMOS Flat Panel (TFT) arrays Consideration: "Cassette" vs. "Cassetteless" operation

Computed Radiography (CR)

...is the generic term applied to an imaging system comprised of:

Photostimulable Storage Phosphor to acquire the x-ray projection image

CR Reader

to extract the electronic latent image

Digital electronics

to convert the signals to digital form

CR Innovations

- High-speed line scan systems (<10 sec)
- Dual-side readout capabilities (increase DQE)
- Structured phosphors
- Mammography applications ??
- Low cost table-top CR readers

DR: "Direct" Radiography

-refers to the acquisition and capture of the x-ray image *without user intervention*
- "Indirect" detector: a conversion of x-rays into light and then light into photoelectrons
- "Direct" detector: a conversion of x-rays to electron-hole pairs with direct signal capture

CCD detector systems • Area Scintillator / lens coupling Scintillating Screen (Gd₂O₂S), Csl • Area Scintillator / fiberoptical coupling Scintillating Screen (Csl) Scintillating Screen (Csl) Scintillating Screen (Csl) Scintillating Screen (Csl)

Optically coupled CCD systems

- Technology improvements are overcoming quantum sink issues (lens / phosphor)
- Low cost systems for budget-limited situations
- Capable imaging systems

Scanning slot chest x-ray system CCD array Fiberoptic coupling No grid Reduced scatter Low dose "Effective" DQE compares to flat-panel systems

CMOS

- "RAM" with photodiode converter
- Random access readout
- Low voltage operation (5V)
- ? NOISE
- Large FOV detector available (tiled CMOS)

Flat-panel Fluoroscopy / Fluorography

- Based upon TFT charge storage and readout technology
- Thin-Film-Transistor arrays
 - Proven with radiography applications
 - Now available in fluoroscopy
 - Csl scintillator systems (indirect conversion)
 - a-Se systems (direct conversion)

Flat vs. Fat						
	Digital Flat Panel	Conventional II				
Dynamic Range	Very Wide (5-10 times more than conventional)	Narrow (TV camera limit)				
Distortion	No Distortion	Distortion from curved input surface of II				
Detector Size	Weight and thickness much lower	Heavy, bulky detector				
Image Area	41 cm x 41 cm square	Round area is more than 20% smaller area for same diameter				
Image Quality	Good resolution, high DQE	Good resolution, high DQE				

Flat panel vs. Image Intensifier

- Electronic noise limits flat-panel amplification gain at fluoro levels (1-5 μ r/frame)
- Pixel binning (2x2, 3x3) offers improvements
- Low noise TFT's are slowly being produced; variable gain technologies on the horizon
- Il's will likely go the way of the CRT......

Detector Characteristics • MTF • NPS • DQE

Equipment considerations

- Specific applications
 - Fluoroscopy
 - Pediatrics
 - Trauma and ED
 - Orthopedics multi-film studies (scoliosis, etc)
 - Dental panorex
 - Operating room
 - Mammography
 - Radiation Therapy

Dental Panorex example Integration into "digital" paradigm often requires creative ideas, e.g., modification of cassette for CR

Advanced Acquisition & Processing Techniques

- Dual energy imaging
 - Tissue selective imaging
 - Differential attenuation with energy
- Digital tomosynthesis
 - Acquisition from several projection angles
 - Reconstruction of tomographic slices

QC tools, phantoms, exposure data

- Consider systems with a simple yet robust QC phantom and automated analysis
- Look for a system having exposure information with database mining capabilities
- Find out about preventive maintenance and unscheduled maintenance procedures
- Provide for adequate quality control support!!
- QC Workshop: Wednesday, Room 608

CR / DR Implementation

- PACS and DICOM
 - Digital Imaging COmmunications in Medicine
 - Provides standard for modality interfaces, storage/retrieval, and print
- Modality Worklist (from RIS via HL-7 "broker")
 - Reduce technologist input errors
- Technologist QC Workstation
 - Image manipulation and processing
 - "For Processing" vs "For Presentation"
 - VOI LUT

-		
-		

CR/DR implementation • Robust PACS/Network System - Image Size: Storage Needs • 8 - 32 Mbytes uncompressed - 10 Pixels/mm - 4300 x 3560 x 2 Bytes • 3 - 13 Mbytes: 2.5:1 Lossless Compression • Lossy compression??? - Network Transmission • 100 Mbit/sec minimum (diagnostic workstations) **CR/DR** implementation • Uniformity Among CR/DR images and Display Monitors Acceptance Testing Measurement of Performance Correction of Substandard Performance - Calibration of CR/DR Response - Calibration of Monitors Maximum brightness Look-up-Tables, DICOM GSDF, Part 14 - Heterogeneous environment more difficult.... IHE? **Conclusions** • CR is the most flexible and cost-effective technology for digital acquisition • Direct digital radiographic devices have advantages in efficiency and throughput • Real-time imaging & advanced processing are clinically relevant considerations