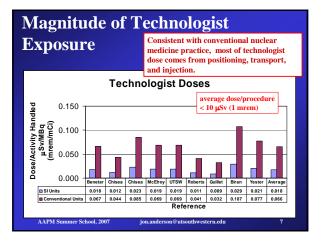

What Is Different When You Have PET/CT in Your Facility?


1) 511 keV energy -increases exposure rate from doses, patients -greatly increases thickness of required shielding 2)Requirements for patient handling during injection and uptake phase Pet in 3) Combined modality scanners Room (PET/CT) require consideration of both gamma-ray and x-ray hazard AAPM Summer School, 2007 jon.ander

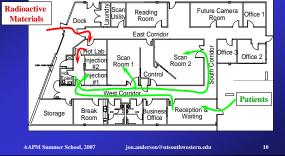
#HVL's	Lead Thickness mm (in, to no		
	X-ray ¹ (average primary for rad room)	PET ²	Even a single half- value layer
1	0.044 (< 1/16)	5.3 (1/4)	for PET is
2	0.103 (< 1/16)	9.9 (7/16)	an
4	0.278 (< 1/16)	19.0 (3/4)	expensive
8	0.718 (< 1/16)	32.5 (1 5/16)	proposition
10	1.366 (< 1/16)	46.0 (1 13/16)	

More on Technologist Exposure				
1) Technologist dose will probably drop as experience increases				
Over a two year period with the same technologists, we saw a 40% decrease in radiation dose per unit activity handled.				
2) For	0.018 μSv/(MBq injected) 370 MBq (10 mCi) injected/pt 10 pt/day			
Yearly: 9 Months:				
AAPM Summer School, 2007 jon.anderson@utsouthwestern.edu 8				

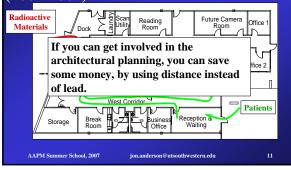
Operating Suggestions to Minimize Technologist Dose

Minimize handling time. Use unit doses.

Use tungsten syringe shields, employ syringe carriers, transport carts, etc. to minimize handling exposure.


Instruct patient before injection. Minimize contact afterward.

Establish IV access with butterfly infusion set.


Use other personnel for hot patient transport. AAPM Summer School, 2007 jon.anderson@utsouthwestern.edu

9

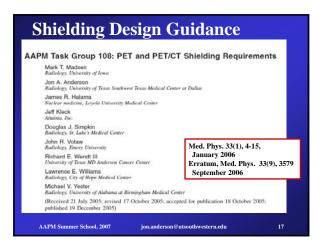
PET Facility Tour: University of Texas Southwestern Medical Center at Dallas (2001-2007)

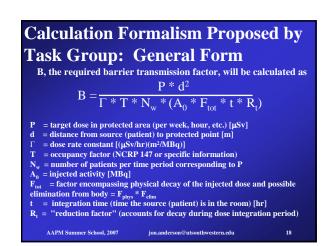
Hot Lab Details: Dose Assay and Preparation Area

Injection Room Details

Notes:

- 1) Injection room Hot lab PET/CT bay are most likely areas to need shielding
- 2) To minimize anomalous uptake -minimize external stimuli (false uptake!) -keep patient quiet and still on gurney or in injection chair


3) Need adjacent hot toilet for patients to use after uptake period. AAPM Summer School. 2007

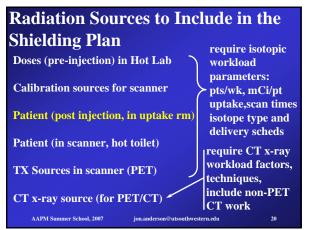


4) Indirect lighting, curtains, noise control are desirable jon.anderson@utsouthwestern.edu 15

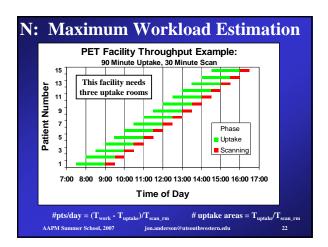
What You Find in the Scanner Bay:

Site Evaluation for PET Shielding

Uses of adjacent spaces (including above and below) and occupancy factors for them

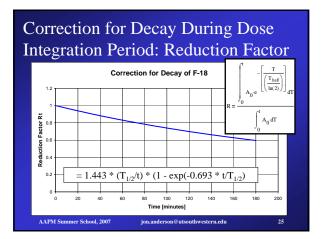

patients/week isotopes to be used, activity/pt types of PET studies to be performed (brains, WB, cardiac) uptake time and scan time for this equipment/study/center

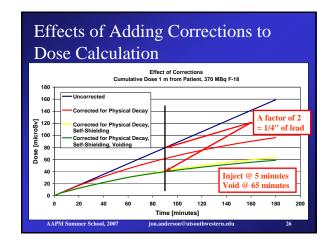

dose delivery schedule (once a day?, multiples?); maximum activity on hand


CT technique factors (kVp, mAs/scan [depends of # beds]) # scans per patient (additional diagnostic scans?) amount of "non-PET" CT workload expected

19

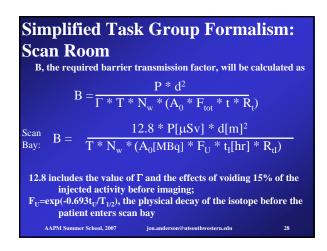
AAPM Summer School, 2007 jon.anderson@utsouthwestern.edu

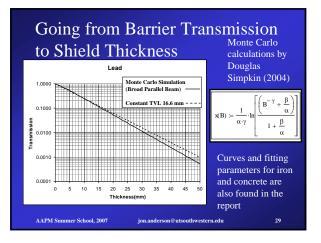


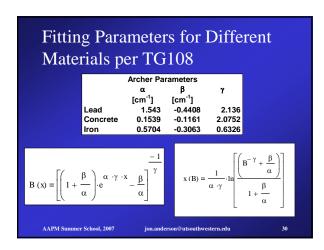


18F: A Plethora of Dose Rate Constants for Point Sources (TG-108)

¹⁸ F Rate Constants	SI Units		Conv	entional Units		
Exposure Rate Constant	15.5	(µR/hr) m²/M	ИBq	0.5735	(mR/hr) m²/mCi	
Air Kerma Rate Constant	0.134	(µSv/hr) m²/	/MBq	0.4958	(mrem/hr) m²/mCi	
Effective Dose Equivalent (ANS-1991)	0.143	(μSv/hr) m²/	/MBq	0.5291	(mrem/hr) m²/mCi	
Tissue Doce Constant	0.148	(μSv/hr) m²/	MBq	0.5476	(m rem/hr) m²/mCi	
Deep Dose Equivalent (ANS-1977)	0.183	(μSv/hr) m²	0.53 (mrem/hr)/mCi			
Maximum Dose (ANS- 1977)	0.188	(μSv/hr) m²				
			for	F-18	bare source	
AAPM Summer School, 2007		jon.anderson@u	itsouthv	estern.edu	23	







Simplified Task Group Formalism: Uptake Room B, the required barrier transmission factor, will be calculated as

 $B = \frac{P * d^{2}}{\Gamma * T * N_{w} * (A_{0} * F_{tot} * t * R_{t})}$ $Uptake B = \frac{10.9 * P[\mu Sv] * d[m]^{2}}{T * N_{w} * (A_{0}[MBq] * t_{U}[hr] * R_{tU})}$ 10.9 is 1/T in (hr/µSv)(MBq/m²); F_{tot} = 1 (no physical decay prior to injection, no elimination) R_{tU} = reduction factor for uptake time t_U
AAPM Summer School, 2007 jon.anderson@utsouthwester.edu 27

Example 1:	Uptake	Room	
Protection Goal:	$P := 20 \ 10^{-6} Sv$		
Distance:	$d := 4 \cdot m$	An uncontrolled area with	
Gamma Constant:	$\Gamma := .092 10^{-6} \cdot \frac{Sv \cdot m^2}{hr \cdot 10^6 Bq}$	100% occupancy is 4m from the patient. 40	
Occupancy:	T := 1	patients a week are injected in this room with	
Number of Patients per Week:	$N_{W} := 40$	555 MBq (15 mCi) of	
Injected Activity:	$A_0 := 555 \cdot 10^6 Bq$	FDG and held for a 1hr	
Decay/Elimination:	F := 1	uptake time.	
Source Duration:	t := 1hr		
Reduction Factor:	R(t) = 0.831	How much shielding is needed?	
$\mathbf{B}_{\mathbf{r}} := \frac{\mathbf{P} \cdot \mathbf{d}^2}{\Gamma \cdot \mathbf{T} \cdot \mathbf{N}_{\mathbf{W}} \cdot \left(\mathbf{A}_{0} \cdot \mathbf{F} \cdot \mathbf{R}(\mathbf{t}) \cdot \mathbf{t}\right)}$	$B_{r} = 0.188$	Ans: 1.2 cm of Pb or 15.2	
$x_{Pb}(B_r) = 1.184cm$	$x_{conc}(B_r) = 15.165cm$		
AAPM Summer School, 2	jon.ande	rson@utsouthwestern.edu 31	

H	Example 2:	Scan Ro	oom			
	Protection Goal:	$P := 20 \ 10^{-6} Sv$				
	Distance:	$d := 3 \cdot m$	An uncontrolled area with			
	Gamma Constant:	$\Gamma := .09210^{-6} \cdot \frac{Sv \cdot m^2}{hr \cdot 10^6 Bq}$	100% occupancy is 3m from the patient. 40			
	Occupancy:	T := 1	pts/week, 555 MBq (15			
	Number of Patients per Week:	$N_{W} := 40$	mCi) FDG/pt, 1hr uptake			
	Injected Activity:	$A_0 := 555 \cdot 10^6 Bq$	time. Patients void (15% of			
	Decay/Elimination:	$F:=e^{-\left[\frac{\ln(2)\cdot\frac{(1h\eta)}{T_{half}}\right]}\cdot(1-15\%)}$	the dose) at 1 hr. 30 minutes spent in scan bay.			
	Source Duration:	t := 0.5hr				
	Reduction Factor:	R(t) = 0.91	How much shielding ?			
		$\mathbf{B}_{\mathbf{f}}=0.334$	Ans: 0.8 cm of Pb or 11.3 cm of concrete			
	10(1)	$x_{c \text{ onc}}(B_r) = 11.278 \text{cm}$				
	AAPM Summer School, 2007 jon.anderson@utsouthwestern.edu 32					

A Shielding Paradigm for Mixed PET/CT Applications (Just a personal opinion)

0) Use architectural layout to minimize shielding requirements (use distance, low occupancies)

1) Identify magnitude and location of sources, including CT. Integrate over period that source is in place, giving dose/wk or dose/hr at one meter for given workload.

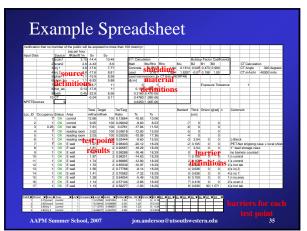
2) Identify all barriers that will contribute to shielding, including pigs, shipping containers, etc. Establish test points at perimeter, sensitive locations. Identify which barriers will shield each point.

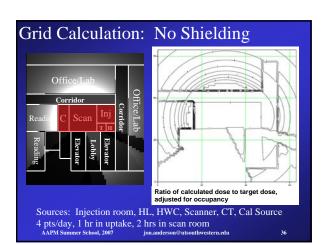
AAPM Summer School, 2007

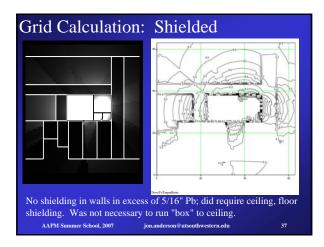
jon.anderson@utsouthwestern.edu

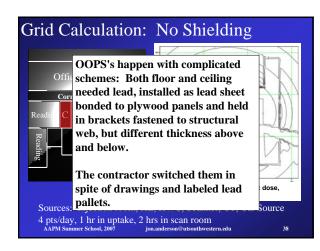
A Shielding Paradigm (cont) 3) Calculate doses (summed over all sources, including CT) without attenuation.

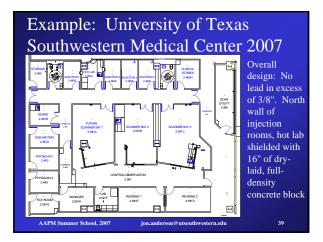
4) Start adding lead or concrete as necessary to the barriers, recalculating the doses as you go. Spread the lead and you may not have to hang really thick sheets!

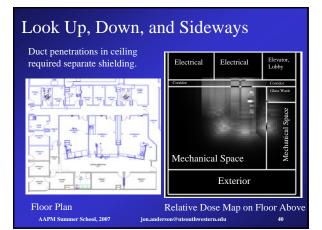

5) Stop when you have met goals (1 mSv/yr, 20 µSv/hr)


A spreadsheet can do all of this (including corrections for anisotropic sources). Special purpose programs can be developed to do the same. Pencil and paper can be used, but it is *tedious*!


jon.anderson@utsouthwestern.edu

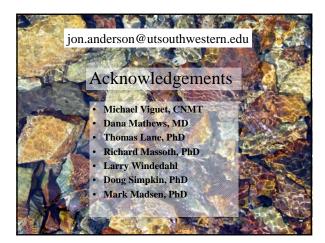

34


AAPM Summer School, 2007



Dry-Laid Concrete Block as a Flexible Alternative

Use full density concrete blocks (not standard items!).


Lay to offset seams.

Provide cosmetic studwall w gypsum board to prevent tampering if area is not controlled.

41

jon.anderson@utsouthwestern.edu

