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OverviewOverview

• Review of shielding materials & their 
properties

• Lead/concrete primary barriers – low energy
• Lead/concrete primary barriers – high energy
• Secondary barriers
• Practical considerations
• Composite doors
• Escape hatch
• “Source constraints”
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Shielding MaterialsShielding Materials
Materials Density Comments

(g/cm2)

Concrete 2.35; 3.85   High density concrete is very expensive

Concrete blocks 2.35; 3.85; 4.62   Lack structural integrity of concrete

Lead 11.35   Great for photons; bad for neutrons.  
  Needs structural support

Steel 7.87   Not as efficient as lead for photons

Earth 1.5   Cheap! Build underground

Brick 1.65 - 2.05

Polyethylene; ~1.0   Used to shield against neutrons in doors, ducts etc.
borated polyethylene

AAPM Summer School – July 28, 2007

Tenth Value LayersTenth Value Layers
Primary TVLs (cm)*

Energy (MV) 4 6 10 15 18 20
Concrete 35(30) 37(33) 41(37) 44(41) 45(53) 46(44)
Steel 9.9 10 11 11 11 11
Lead 5.7 5.7 5.7 5.7 5.7 5.7

Leakage TVLs (90°)*

Energy (MV) 4 6 10 15 18 20
Concrete 33(28) 34(29) 35(31) 36(33) 36(34) 36(34)
Steel** 8 8.5 8.7 8.7
Lead** 4.5 4.6 4.7 4.7

*    First term is 1st TVL and term in brackets is for all other TVLs.
     Data from NCRP #151
**   Data from McGinley 
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Rationale for Laminated shieldingRationale for Laminated shielding
- upgrading existing facilities from low energy to 

high energy

- remodelling existing facilities where space is 
limited

- new facilities where space is limited

- requires high density, high-Z material

- photoneutron production, capture γ rays for high 
energy beams
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Geometry for Laminate ProblemGeometry for Laminate Problem
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Laminated Barriers I: Low Energy Laminated Barriers I: Low Energy 
The general equations to determine the relative 
(optimal) thicknesses of lead and concrete for a 
single energy x-ray beam (no neutrons) for a fixed 
wall thickness are:

where nT is the total number of TVLs, T is the 
overall thickness and c and l refer to concrete and 
lead respectively.

T c l

c c l l

n n n
T n TVL n TVL

= +
= +
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Laminated Barriers IILaminated Barriers II

The solution to these equations is:

T c
l

c l

c T l

n TVL Tn
TVL TVL

n n n

−
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−
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Laminated Barriers IILaminated Barriers II
However, life under NCRP #151 is not quite 
so simple since there are now two TVLs for 
concrete, so the equations become: 

where (c,1), is the first TVL and (c,e) are 
the subsequent TVLs for concrete.

,1 ,( 1)
T c l

c c c e l l

n n n
T TVL n TVL n TVL

= +
= + − +
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Laminated Barriers IIILaminated Barriers III

The solution to these equations is: 

, ,1 ,

,

( )T c e c c e
c

c e l
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n TVL T TVL TVL
n

TVL TVL
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Laminated Barriers IVLaminated Barriers IV
However, if lead is the first material in the beamline
and the thickness is > 1 TVL, then only TVL c,e is 
needed and the equations become:

with the solution

,

T c l

c c e l l

n n n
T n TVL n TVL

= +
= +

,

,

T c e
l

c e l

n TVL T
n

TVL TVL
−
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ExampleExample

- Assume that a maximum thickness of 122 cm 
(48”) is specified for the primary barrier 
thickness, that W=750 Gy/wk; d=7 m; U=0 .213; 
T=1; P=0.02 mSv/wk. One calculates nT = 5.2.

- For a 15 MV x-ray beam: TVL c,e = 41 cm and
TVLl = 5.7 cm

- ∴nl = 2.6, so tl = 14.7 cm (5.8”)
- ∴nc = 2.6, so tc = 107.3 cm (42.2”)
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Mixed Energy Beams IMixed Energy Beams I
- The majority of radiotherapy units sold today are 

dual energy machines
- Virtually all radiotherapy centers use a mix of 

photon energies
- If one uses 6 MV for IMRT, as many centers do, 

the majority of MU delivered could be at low 
energy

- Example: At MGH, for a 6/18 MV machine the 
energy use prior to IMRT was 20%/80% (MU). 
With 28% IMRT patient load, the use was 
70%/30%
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Mixed Energy Beams IIMixed Energy Beams II

- The equations now become more complicated 
(assuming lead is the first material and ignoring 
neutrons):

- This equation is solved using an iterative 
procedure or by solving separately for the two 
energies and making the usual comparison 
(<1TVL difference, add 1 HVL)

, ,6 ,6 , ,10 ,10

( ) ( )

6 10 6 102 *10 *10 *10 *10c e l c e l

T x x T x x
TVL TVL TVL TVL

T
UTP P P W W
d

− −
− − − −⎛ ⎞

⎜ ⎟= + = +
⎜ ⎟
⎝ ⎠
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Mixed Energy Beams IIIMixed Energy Beams III

- One can take the alternative approach of 
using only the highest energy to calculate 
the primary and the mixed energies to 
calculate the leakage (90°) radiation.

- The rationale is that this represents the 
worst case for both the primary (higher 
energy) and the leakage (higher MU)
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ExampleExample

Assuming the same maximum thickness of 122 
cm (48”) for the primary barrier thickness, that 
W15=225 Gy/wk;W6=525 Gy; d=7 m; U=0 .213; 
T=1; P=0.02 mSv/wk. 

- For a 15 MV x-ray beam: TVL c,e = 41 cm and
TVLl = 5.7 cm

- tl = 12.7 cm (5”)
- tc = 109.2 cm (43”)
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Laminated Shielding for Laminated Shielding for 
Secondary BarriersSecondary Barriers

Adjacent to primary:
- There are two TVLs for scattered  radiation in 

lead
- The leakage TVLs are only for 90º
- There are no scatter TVLs for steel

90º barrier:
- Only leakage is important, particularly if IMRT is 

a consideration
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Does the Obliquity Does the Obliquity Fcator Fcator Apply Apply 
to Scattered Radiation?to Scattered Radiation?

• Recommendations of NCRP #49 and NCRP #151

• Verify with Monte Carlo program

• Sheikh-Bagheri D. and Rogers DWO. “Monte 
Carlo calculation of nine megavoltage photon 
beam spectra using the BEAM code” Med. Phys
29: 391- 402; 2002
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Obliquity Factor for 30Obliquity Factor for 30°° Scattered Scattered 
Radiation on Concrete: 18 MVRadiation on Concrete: 18 MV
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Obliquity Factor for 30Obliquity Factor for 30°° Scattered Scattered 
Radiation on Lead: 6 MVRadiation on Lead: 6 MV
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ReRe--retrofit: A Case Studyretrofit: A Case Study
• Treatment room began operating with a Co-60 unit 

(Theratron 780-with beam stopper)

• This unit was replaced with a 4 MV linac with no beam 
stopper

• It is now being replaced with a 6 MV machine

• The first room was all regular density concrete
• The first change added lead on 3 walls plus the ceiling (to 

be shown on later slides)
• The current change is to add additional lead
• Secondary barrier considerations

AAPM Summer School – July 28, 2007

Laminated Barriers Laminated Barriers –– High EnergyHigh Energy

- For high energy x-ray beams, neutrons have to be 
shielded against as well as photons

- For concrete-only walls, this generally presents 
no problem

- However, for laminated primary barriers, the 
sufficiency of the concrete barrier to protect 
against neutrons needs to be examined
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Laminated shielding: Neutrons + Laminated shielding: Neutrons + 
Photons IPhotons I

- The equations for determining the lead and concrete thicknesses are 
the same, with the constraint that the concrete is sufficient for the 
neutrons from the machine

- Ignore for the moment photoproduction of neutrons and subsequent 
generation of capture gamma rays

, ,

,

, , ,

,
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Laminated shielding: Neutrons + Laminated shielding: Neutrons + 
Photons IIPhotons II

- If the concrete thickness is inadequate for neutrons, then 
polyethylene can partially be used, so we have a new set of 
equations

, ,

, ,

, , , , ,

, , , ,
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Laminated Barriers Laminated Barriers –– High EnergyHigh Energy

- In addition, photoneutron production in the lead 
and subsequent production of capture gamma rays 
needs to addressed

- The greater the thickness of lead required, the 
greater the neutron fluence and production of 
capture gamma rays will be

- The magnitude of this effect will also depend how 
much concrete is placed after the lead
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Laminated Barriers Laminated Barriers –– High EnergyHigh Energy

- For walls, it is easy to install the lead on the upstream side 
of the beam since the lead can be installed in a self-
supporting manner

- This is not true for shielding in the ceiling where a base 
support for the lead of approximately 18” concrete is 
required

- It also does not apply to the situation where there are two 
adjacent high-energy rooms facing each other where the 
high Z material should be centered in the concrete
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Production of Neutrons by Primary Production of Neutrons by Primary 
Beam in a Laminated BarrierBeam in a Laminated Barrier

1t 2tmt
Incoming

photon neutron

Capture γ ray

Incoming
photon
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Production of Neutrons by Primary Production of Neutrons by Primary 
Beam in a Laminated BarrierBeam in a Laminated Barrier

nx TVLtTVLt

m tt
FRDH //

2

max0 21 10*10*
)3.0

2

−−

⎟
⎠
⎞

⎜
⎝
⎛ ++

=

where H is the neutron dose equiv.(μSv s-1)
D0 is the x-ray dose at isocenter (cGy s-1)
R is the neutron prodn. rate (μSv cGy-1 m-2)

and Fmax is the max. beam area at isocenter (m2)

P. McGinley
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Production of Neutrons by Primary Production of Neutrons by Primary 
Beam in a Laminated BarrierBeam in a Laminated Barrier

Note that the value of H in McGinley’s 
equation is a balance between attenuation 
of the incoming photons (1st exponential 
term) and the attenuation of the 
photoproduced neutrons (2nd exponential 
term)
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Capture Gamma RaysCapture Gamma Rays

To account for capture gamma rays, NCRP 
recommends using a factor of 2.7 for the 
photon component:

2.7*Tot n photon n trH H H H H= + = +
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Solution to the Laminated Barrier Problem Solution to the Laminated Barrier Problem 
for High Energies: Two Solutionsfor High Energies: Two Solutions

1 Successive approximation:
- Calculate lead and concrete thicknesses 

required for stopping photons and concrete 
for neutrons separately.

- Determine dose equivalent for photoneutrons.
- Determine overall photon dose from “2.7”

factor
- Scale the total dose to 0.02 mSv/wk and start 

again with the first step using the reduced 
MPD

2 Optimization
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Cost Effectiveness of Laminated Cost Effectiveness of Laminated 
BarriersBarriers

- Newman and Asadi-Zeydabadi* have used 
a linear programming technique to optimize 
the cost of laminated shielding, subject to 
dose and/or thickness constraints

- They found that steel was a cheaper 
laminate than lead, contrary to popular 
construction techniques

* AAPM 2007; SS-FF-T-16
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Optimization: The Cost of LeadOptimization: The Cost of Lead

- Until a few weeks ago, the cost of lead was 
~$0.70/lb

- More recently it has climbed to >$1.75/lb

- Shortage is due to major mine closure in 
Australia and redued exports from China
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Thresholds for Photonuclear Thresholds for Photonuclear 
ReactionsReactions

Reaction Threshold
(MeV)
11.2 (92%)

8.1
6.7
7.4

...Fe nγ + → +
206 ...Pb nγ + → +
207 ...Pb nγ + → +
208 ...Pb nγ + → +
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Neutron Yield vs. Lead Thickness: 18 MVNeutron Yield vs. Lead Thickness: 18 MV
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Photoneutron Photoneutron Production vs. ThicknessProduction vs. Thickness
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PhotoneutronPhotoneutron RatiosRatios

NCRP #151 mSv cGy-1 m-2

Pb 18 MV 19
Fe 18 MV 1.7
Pb 15 MV 3.5

Ratios: NCRP #151 Monte Carlo
(dose) (fluence)

18 MV (Pb/Fe) 11.2 4.5
Pb (18 MV/15 MV 5.4 2.5
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Width of Primary BarrierWidth of Primary Barrier

Secondary
shielding

30 cm 30 cm

Primary
shielding

Isocenter

Target
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Contouring the Primary Shielding in the Contouring the Primary Shielding in the 
CeilingCeiling

Diagrams courtesy of P. McGinley
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Primary CeilingPrimary Ceiling IsodoseIsodose ContoursContours

Programs can help
to make the process
of determining the
isodose curves and,
hence the lead
“steps”, easier

-Biggs.P. Health Physics,
43:601-607, 1982.
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What AboutWhat About
ConcreteConcrete--FreeFree

Barriers?Barriers?

Shielding for 3rd floor IORT machine

Lead

BPE
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Problem of HVAC DuctsProblem of HVAC Ducts
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LeadLead--Only Room (Photons) : Only Room (Photons) : 
GroundshineGroundshine
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Upgrading to a High Energy Upgrading to a High Energy LinacLinac -- Wall (1)Wall (1)

for primary barriers, 
laser support can
be attached to the 

steel channel
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Upgrading to a High Energy Linac - Ceiling (1)
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Upgrading to a High Energy Upgrading to a High Energy LinacLinac -- Ceiling (2)Ceiling (2)
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Upgrading to a High Energy Upgrading to a High Energy LinacLinac -- CeilingCeiling
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II--Beam SupportBeam Support

Supporting bolts
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Maze Doors Maze Doors 
- For low energy machines, maze doors 

are constructed solely of lead and 
steel/or wood

- For high energy machines, in addition 
to lead, neutrons have to be considered 
and polyethylene/borated polyethylene 
is the material of choice.
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Primary Beam Incident on Outer Maze WallPrimary Beam Incident on Outer Maze Wall
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AlbedosAlbedos for Infor In--Plane ScatteringPlane Scattering
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XX--ray spectrum from Primary ray spectrum from Primary 
Scattered at ~90Scattered at ~90°°
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Spectrum of 90Spectrum of 90°° Scattered Scattered 
Primary RadiationPrimary Radiation
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Attenuation of 90Attenuation of 90°° Scattered Scattered 
Radiation by Various MaterialsRadiation by Various Materials
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Material Thickness Required to Material Thickness Required to 
Reduce Reduce Fluence Fluence by 10by 10--44

Material Concrete Steel Lead
Distance (m) (cm) (cm) (cm)

1 79.3 23.2 14.0

4 37.6 11.8 5.8
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Attenuation of 90Attenuation of 90°° Scattered Scattered 
Primary RadiationPrimary Radiation
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Doors  for High Energy MazesDoors  for High Energy Mazes

- In addition to the scatter and leakage 
components noted earlier, additional 
components due to neutrons come into play 
at high energies (≥ 10 MV)

- These components dominate over the wall-
scattered x-ray components

- They consist of neutrons and capture 
gamma rays from neutron interactions
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Combined Dose at Maze DoorCombined Dose at Maze Door

The neutron and capture γ ray components 
are calculated and shielding thicknesses to 
meet the required effective dose equivalent 
are derived using the following TVLs:

neutrons (100 keV) - 4.5 cm polyethylene
capture γ rays - 6.1 cm lead
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Neutron production of Capture Neutron production of Capture γγ RaysRays
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Photon, Neutron Photon, Neutron Fluence Fluence vs. Distancevs. Distance
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Capture Capture γγ Ray SpectrumRay Spectrum
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Attenuation of NeutronAttenuation of Neutron--generated generated 
Photons in LeadPhotons in Lead
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High EnergyHigh Energy

Photo courtesy of P. McGinley
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Heavy Door RequirementsHeavy Door Requirements

- All electrical/electronic equipment should 
be outside the room for ready access

- A come-along should be available to open 
the door mechanically; this requires a bolt 
hole in the door and in the wall.
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If the Door Does Not Move: Escape HatchIf the Door Does Not Move: Escape Hatch

- What is its purpose?
If a heavy sliding door fails in the closed position 

with a patient on the table, there needs to be emergency 
access. If the problem is not electrical and the come-along 
does not work, another method of entry is required.

- But is it needed?
The design of current heavy door support systems 

(overhead rail) minimizes mechanical failure with the door 
touching the floor. However, …
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Equipment Needed in Case of Electrical Equipment Needed in Case of Electrical 
or or Mechamical Mechamical FailureFailure
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Escape Hatch Shielding Escape Hatch Shielding 
RequirementsRequirements

• For low energy rooms, lead only, can use two 
doors, total thickness equivalent to local wall 
thickness

• For high energy rooms, need lead and 
polyethylene, total thickness equivalent to local 
wall thickness for photons and neutrons

• Doors must be linked to the general door interlock 
chain to ensure that, if opened, the beam will be 
cut off
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Escape HatchEscape Hatch
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Escape HatchEscape Hatch

Lead/

Polyethylene

combination
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And now for something completely And now for something completely 
different different ……

• In the talk on Report #147 yesterday, we heard 
how the issue of “source constraints” was 
overcome

• We also heard from the PET talks where the need 
to consider multiple sources was required to 
compute the dose in various adjacent areas

• In RT, the need sometimes arises to consider the 
same situation ….



AAPM Summer School – July 28, 2007

1

2
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Consideration of the impact
of multiple sources

on
maximum permissible

doses in RT

New Radiation TherapyNew Radiation Therapy
Department at MGHDepartment at MGH
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Therapists Receive 
Dose Inside the 

Room!
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SummarySummary
- Laminated barriers are commonly used to 

upgrade old Rx rooms and also in new 
construction where space is limited

- The methodology for handling laminated 
barriers is straightforward at low energies, 
but requires careful consideration of 
neutrons and capture γ rays for high 
energies and involves iterative calculations
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Thank you for your attention!


