Brachytherapy Facility Shielding

Glenn P. Glasgow, M.S., Ph.D., F.A.A.P.M., F.A.C.R. Professor Emeritus, Department of Radiation Oncology Loyola University Chicago Stritch School of Medicine Maywood, IL 60305

_	Special Acknowledgments for contributions to this talk
_	Special Acknowledgments for contributions to this talk
	Rupak K. Das – U. Wisc. Hospital – Site host/HDR slides
	Jean St. Germain – Memorial Sloan-Kettering Ca Ctr –
	Provided working draft of Appendix D – NCRP Report 155
	Gil' ad N. Cohen - Memorial Sloan-Kettering Ca Ctr –Site
	host/IORT(HDR) slides
	Dimos Baltas – Provided radionuclide parameters from his
	new book Physics of Modern Brachytherapy for Oncology
	Spanish (Valencia) Shielding Group (Gimeno, Granero,
	Perez-Calatavud, Ballester, Casal, & Cases) – Transmission
	data for new radionuclides
	- Kovin Corrigon Lovela II, RSO - Lovela HDR voult data
	Revin Comgan Loyola U. RSO – Loyola HDR vault data

- What older, but still useful, information is available? How do recent changes in the popularity of brachytherapy
- procedures affect program/facility design?
- What factors does one consider in program/facility design?
- Where can one find older and newer shielding data?
- What are the recent, relevant articles?
- This presentation provides some (but not necessarily all) answers to these and related question.

Older, relevant information on remote afterloading rooms

- Glasgow, G.P., J. Daniel Bourland, Perry W. Grigsby, Jerome A. Meli, and Keith A. Weaver (1993). *Remote Afterloading Technology*, (TG Report 41) American Institute of Physics, New York
- Houdek, P.V., G.P. Glasgow, J.G. Schwade, A.A. Abitbol (1994) "Design and implementation of a program for high dose rate brachytherapy." In: S. Nag (Ed.) *High Dose Rate Brachytherapy: A Textbook,* Armonk, NY, Futura Publishing Co., Inc.
- Glasgow, G.P. and Kevin W. Corrigan (1995). "Radiation design and control features of a hospital room for a low dose rate remote afterloading device" *Health Physics* 69: 415-419.
- Stedeford, B., H.M. Morgan, W.P.M. Mayples (1997). "Brachytherapy Room Design." In: The Design of Radiotherapy Treatment Room Facilities, York, England, Institute of Physics and Engineering in Medicine, 77-89

Recent relevant information on remote afterloading rooms

- Glasgow, G.P. (2005). "Brachytherapy Facility Design". In: B.R.Thomadsen, M.J. Rivard, W.M. Butler, (Eds), Brachytherapy Physics. Proceedings of the joint American Association of Physicists in Medicine/American Brachytherapy Society Summer School. Medical Physics Publishing, Madison, WI, 127-151.
- McGinley, P. H. (2002). Shielding Techniques for Radiation Oncology Facilities, 2an Ed. Medical Physics Publishing, Madison, WI, 130-139. Glasgow, G. P. (2002). "Equipment Selection and Facility Design",
- Proceedings of the American College of Medical Physics 19th Annual Meeting and Workshops, American College of Medical Physics, June 3-4, Jackson Hole, WY, 263-279
- NCRP Report 155 (2007 In Press) Management of Radionuclides Therapy Patients. National Council on Radiation Protection and Measurements, Washington DC. (Courtesy J. St. Germain; Private Communication, June 25, 2007)

Recent relevant radionuclide data and shielding data

- Perez-Calatayud, J., Granero, D., Ballester, F., Casal, E., Crispin, V., Puchades, V., Leon, A., and Verdu, G. (2004) "Monte Carlo evaluation of kerma in an HDR brachytherapy bunker." Phys. Med. Biol. 49: N389-N396.
- Granero, D., Perez-Calatayud, J., Ballester, F., Bos, A.J.J., and Venselaar, J. (2005) "Broad-beam transmission data for new brachytherapy sources, Tm-170 and Yb-169. Radiat. Prot Dosim 118: 11-15.
- Lymperopoulou G., Papagiannis P., Sakeeillou L., Georgiou E., Hourdakis C.J., and Baltas D. (2006). "Comparison of radiation shielding requirements for HDR brachytherapy using ¹⁶⁹Yb And ¹⁹² Ir sources. *Med Phys* 33: 2541-2547.
- Gimeno, J., Granero, D., Perez-Calatayud, J., Ballester, F., Casal, E., and Cases, R. (2007) "Broad-beam transmission curves for new radionuclides in brachytherapy. Brachytherapy 6: 108-109.
- Rivard, M.J. (2007). "Brachytherapy dosimetry parameters for a ¹³¹Cs source." *Med Phys* 34: 754-??.

Isotope	Beta-ray Energies	Major Photon Energies	Average Photon Energies	Exposure Rate Constant ^a	Air Kerma Rate Constant ^b	Manufacturer and Model	Dose Rat Constant
	E _p (MeV)	E ₇ (MeV)	Ē _y (MeV)	(Γ _δ)x (R cm²/h/mCi)	$(\Gamma_{\delta j})_k \over (\mu_{\rm Gym}^2/h/MBq)$		Λ (µGy/h/
⁶⁰ Co	0.313	1.17, 1.33	1.25	13.07	308.5		
¹³⁷ Cs	0.514, 1.17	0.662	0.662	3.275	0.0773		
						CIS CSM11 Amersham CDC-1 Amersham CDC-3 Radiation Therapy Resources 67-800 3M 6500/6D6C 3M 6500 Amersham CDCS.J	1.096 1.113 1.103 0.932 0.960 0.973 0.979
		0.412- 1.088				Best Industries	
¹⁹² lr	0.24+0.67	0.136- 1.062	0.38	4.69	0.1110	Best Industries	1.12
a For an u	nfiltered point so	arce with 8 from	i 1 to 11.3 keV, e	depending on isote	pe		
^b Air kern	ha rate constant in	µGy m²/hMBq	; 1 R cm ² /h/Ci=1	.9371 x 10 ⁻¹⁹ C n	² /kg/s Bq=0.0236 μG	y m²/h/MBq	
* Includes	filtration inheren	t in commercial	ly available seed	s.			
t same	12 Table II: 1 45	and black incas	hu consolution				

Isotope	Beta-ray Energies	Major Photon Energies	Average Photon Energies	Exposure Rate Constant ^a	Air Kerma Rate Constant ^b	Manufacturer and Model	Dose Rate Constant ^c
	E _β (MeV)	E _γ (MeV)	Ē ₇ (MeV)	(Γ _δ)x (R cm²/h/mCi)	$(\Gamma_{\delta})_k = (\mu_{Gnm}^2/h/MBq)$		Λ (µGy/h/U
¹⁶⁹ Yb	None	0.063, 0.198	0.143		0.0431		
125]	None	0.027- .0355	0.028 (includes x-rays)	1.51† (1.45)	0.0355		
						Amersham 6702	
						Amersham 6711	0.965
						Best Industries	1.018
						2301 NASI MED	1.036
						Babio/Thorsoonice	
103Pd	None	0.02-0.48	0.021	1.48	0.0361	125.506	1.012
						Imagyn IS-12501	0.940
						Theragenics 200	0.686
						NASI MED 3633	06.88
131Cs	None	0.029-	0.030			IsoRay Medical	1.046
						CS-1 Rev 2	
¹³⁰ Tm	0.968	0.052, 0.084	0.066		0.00053		
* For an u	filtered point so	urce with 8 from	1 to 11.3 keV,	lepending on isote	ope	!	
^b Air kern	a rate constant in	n uGv m²/hMBa	1 R cm ² /h/Ci=	.9371 x 10 ⁻¹⁹ C n	r²/kg/s Ba=0.0236 uG	v m²/h/MBa	
e Tanka da a	diamate a laboration						

sources. Lymperopoulou et al.							
		α (cm ⁻¹)	β (cm ⁻¹)	1			
Lead	169Yb	0.4113	3.337	1.0			
	192Ir	0.1234	0.164 3	0.6			
Concrete	¹⁶⁹ Yb	0.2005	0.037 81	1.8			
	192Ir	0.1642	-0.088 82	1.2			

Table 1	A: Physica	l Properties of Ra	dionuclides Curr	ently Used in Brad	hytherapy
Isotope	T _{1/2}	HVL ^a (Approximate value with large attenuation) (water; cm)	HVL ^a (Approximate value with large attenuation) (Lead; cm)	HVL ₁ (1 st HVL) (Lead; cm)	HVL _e (Equilibrium HVL) (Lead; cm)
⁶⁰ Co	5.26 y	10.8	1.2°		
¹³⁷ Cs	30 y	8.2	0.65°		
¹⁹⁸ Au	2.7 d	7.0	0.33°		
¹⁹² Ir	73.83 d	6.3	0.6°	0.28 ^d	0.6 ^c /0.57 ^d
a. Approt c. Nation Shielding MeV. Be Hourdaki brachyth e. Granen transmis: 15, 2006	timate value al Council or <i>Design and</i> thesda, MD. is, C. J., and <i>erapy using</i> to, D., Perez- sion data for N/A Da	obtained with large e n Radiation Protection Evaluation for Medi NCRP 1976. d. Lytt Baltas, D. Comparise 169 Yb and ¹⁹² Ir source Calatayud, J. Ballest new brachytherapy s ta not available	attenuation; b. App n and Measurements cal Use of X-rays ann nperopoulou, E., Papp on of radiation shield 28. Med Phys 33: 254 er, F., Bos, A.J.J., an cources, Tm-170 and	roximate value (NCRP) Report 49, 5 <i>l Gamma Rays of Ema</i> agiannis, P., Sakellioo ing <i>requirements for</i> 41-2547, 2006 d Venselaar, J., <i>Broae</i> <i>Yb-169</i> . Radiat. Prot	tructural rgies up to 10 1, L., Georgiou, E. HDR I-beam Dosim. 118, 11-

¹²⁵ I 103Pd	59.4 d 16.97 d	2.0	0.0025		
¹⁰³ Pd	16.97 d				
		1.6	0.0008 ^b		
¹³¹ Cs	9.7 d	N/A	0.002°		
¹⁶⁹ Yb	32.02 d	N/A	0.18e/0.2f	0.025 ^d /0.023 ^e	0.16 ^d
¹⁷⁰ Tm	128.6 d	N/A	0.017°		
a. Approx c. Nationa Design an MD. NCR and Balta	imate value Il Council or <i>Id Evaluation</i> P 1976 S. D. Compa	obtained with large a n Radiation Protection <i>n for Medical Use of</i> d. Lymperopoulou, f rrison of radiation shi	attenuation; b. Appr n and Measurements (<i>X-rays and Gamma R</i> E., Papagiannis, P., Sa ielding requirements f	oximate value NCRP) Report 49, St ays of Energies up to kelliou, L., Georgiou	ructural Shieldin, 10 MeV. Betheso , E. Hourdakis, C my using ¹⁶⁹ Yh an
192 Ir sour	ces. Med Ph	ivs 33: 2541-2547, 20	006	or more or a city in crug	7
e. Granero	, D., Perez-	Calatayud, J, Balleste	er, F., Bos, A.J.J., and	Venselaar, J., Broad-	beam transmiss

Radioisotope	Concrete	Steel	Lead
Cobalt-60			
NCRP 40 & 49ª	20.6	6.9	4.0
IPEM 75 ^b	20.6	No data given	4.0
IPSM 46	No data given	No data given	4.6
Boutroux-Jaffre	22	6.7	4.2
Cesium-137			
NCRP 40 & 49ª	15.7	5.3	2.1
IPEM ^b	15.7	No data given	2.1
IPSM 46	No data given	No data given	2.2
Boutroux-Jaffre	17.5	5	2.2

Radioisotope	Concrete	Steel	Lea
Ir-192			
NCRP 40 & 49 ^a	14.7	4.3	2.0
IPEM 75 ^b	11.3	No data given	1.5
IPSM 46	No data given	No data given	1.2
Boutroux-Jaffre	14.7	4.3	1.6
Lymperopoulou et al ^c	14.1	No data given	1.87
Au-198			
NCRP 40 & 49ª	13.5	No data given	1.1
IPEM 75 ^b	13.5	No data given	1.1
IPSM 46	No data given	No data given	1.0

Concrete	Steel	Lead
11.4 10.4	No data given No data given	0.53 0.18
6.6	No data given	0.073
	Concrete 11.4 10.4 6.6	Concrete Steel 11.4 No data given 10.4 No data given 6.6 No data given

National Council on Radiation Protection and Measurements (NCRP). NCRP Report No. 49. Structural Shielding Design and Evaluation for Medical Use of X-rays and Gamma Rays of Energies up to 10 MeV. Bethesda, MD: NCRP 1976

Lymperopoulou	et al. NCR	P 147	EUROATOM directive 96/29		
Агеа	Dose limit <u>E. mSv ye</u> ar ⁻¹	Shielding design goal P, μGy week ⁻¹	Dose limit E, mSv year ⁻¹	Shielding design goo P, μGy wee	
Controlled	5	100	20	200	
Supervised			6	60	
Non controlled	1	20	1	10	

Workload Estimates	– 370 GBq	(10 Ci) Ir-192	
Parameter	NCRP 155	Lymperopoulou	Glasgow
Air Kerma Rt or St @ 1 m	0.039 Gy/h	0.04 Gy m²/h	0.04 Gy m²/h
Absorbed Dose Rt @ 1 m	0.043 Gy/h		
Absorbed Dose/Pt or Fx	N/A	9.5 Gy	10 Gy
No. Pts (Fxs)/Day	4	N/A	0.8
No. Pts (Fxs)/Week	20	N/A	4
No. Pts (Fxs)/Yr (50 Wk)	200	N/A	200
Treatment Time/Pt or Fx	0.33 h	N/A	0.5 h
Total Time/Week	6.7h	N/A	2 h
Total Time/Yr (50 Wk)	335 h	N/A	100 h
K _p (Total Ref Air Kerma Rt)	N/A	0.00067 Gy m²/Fx	N/A
Workload (Gy/Week)	0.3 Gy/Wk	N/A	0.08 Gy/Wk

							Yearly	
						Inverse	Exposure	
				Distance	Distance		[R] at	
	Location	Description	Area Type	(ft)	(m)	Reduction	Location	P (R/Yr)
	А	Enrty Door	Controlled	12	3.65	0.075061	35.2787	0.25
	В	Console	Controlled	12	3.65	0.075061	35.2787	0.25
	С	Electric Shop	Uncontrolled	12	3.65	0.075061	35.2787	0.1
	D	Block Shop	Uncontrolled	12	3.65	0.075061	35.2787	0.1
	E	CT/Simulator	Controlled	12	3.65	0.075061	35.2787	0.25
	F	Ovhead (Duct)	Uncontrolled	14	4.27	0.054846	25.7776	0.1
	(0.46 Rm ² /h/	(Ci)*(10 Ci)*(100	h) = 470 R/Yr					

					P (R/Yr)/			
					Yr Exp (R)			_
					= B	77.0	Thickness	Thickness
			Yearly		Barrier	IVLS	Concrete	
		Inverse	Exposure		Reduction	Needed	Needed	Needed
	Distance	Square	[R] at		Needed	(0.1) ^x	1 TVL =	1 TVL =
Location	(m)	Reduction	Location	P (R/Yr)		X=(In B/In 0.1)	14.7 cm	5.8 inches
							(cm)	(inches)
А	3.65	0.075061	35.2787	0.25	0.0070864	2.15	See Note	
В	3.65	0.075061	35.2787	0.25	0.0070864	2.15	31.6	12.5
С	3.65	0.075061	35.2787	0.1	0.0028346	2.55	37.4	14.8
D	3.65	0.075061	35.2787	0.1	0.0028346	2.55	37.4	14.8
E	3.65	0.075061	35.2787	0.25	0.0070864	2.15	31.6	12.5
F	4.27	0.054846	25.78	0.1	0.0038793	2.41	35.4	14.0
(0.46 Rn	n²/h/Ci)*(10 Ci)*(100	h) = 470 R	Yr	RSO decid	ed to use 15"	Concrete i	n all walls
For Doo	r. for 2.2	cm TVL Ph	need 4.3	cm (1.69 ir	nch) Pb: use	d 1.75 inch		

Comparative Maze Data					
Outer Dimensions	McGinley's Maze	Perez-Cal'd Maze			
Width (Vault + maze)	9.5 m / 31 ft	6 m / 19.7 ft			
Depth (Maze to outer wall)	6 m /19.7 ft	5.25 m / 17.2 ft			
Maze Wall Thickness	0.5 m / 1.64 ft	0.68 m / 2.2 ft			
Maze Wall Transm'n	3.55 TVL	4.8 TVL			
Maze Inner Width	2.38 m / 7.8 ft	1.5 m / 4.9 ft			
Maze Depth (To Outer Wall)	5 m / 16.4 ft	4.75 m / 15.6 ft			
Source Activity	9 Ci	8.7 Ci			

Comparative Maze Exposure Rates				
	McGinley	Perez-Calatayud		
Distance (cm) from from back wall	Exposure Rate (mR/h)	Exposure Rate (mR/h)		
125		69		
212	36.2			
225		23		
262	25			
275		13.8		
312	13.7			
375		6.9		
412	3.7			
475		4.6		
512	2.4			
662	2.1			

End-of-Maze Exposure Rate Estimate	
	Primary
Method: NCRP 151; pp 35-37- Linac Maze	Wall
(For clarity, using exact equation notations,	
even though they are not directly applicable	
Normalization: Perez-Calatayud's Fig. 2 graph shows E-	4
cGy/h/U=4.6 R/h for 10 Ci Source	4.6
U (Use Factor) (Unity for brachytherapy source)	1
d _h (distance to vault rear wall) (m)	2.6
α_0 (1st Scatter Coeff; Normal Incidence; 45 ⁰ ; 0.38 MeV)	0.02
A ₀ (Beam Area, 1st Scatter) (3.8 m x 2.3 m (height)	8.7
d _r (distance to midplane of maze; point b) (m)	3.7
d _z (distance from to midplane of maze to end of maze) (m	i) 3.0
A _z (A ₀ project onto maze wall) (1.7 m x 2.3 m (height)	4.0
End Maze Exp Rate (R/h) = $U_{\alpha 0} A_{0\alpha z} A_{z} / (d_{h} d_{r} d_{z})^{2}$	0.0083

End-of-Maze Exposure Rate Estimate	
	End Maze
Method: NCRP 151; pp 35-37- Linac Maze	Wall
(For clarity, using exact equation notations,	
even though they are not directly applicable	
Normalization: Perez-Calatayud's Fig. 2 graph shows E-4	
cGy/h/U=4.6 R/h for 10 Ci Source; N	4.6
U (Use Factor) (Unity for brachytherapy source)	1
d _{sec} (distance to maze center line back maze wall) (m)	3.7
α_1 (1st Scatter Coeff; 45 ⁰ Incidence; 0 ⁰ Scatter; 0.38 MeV)	0.029
A ₁ (Rear wall maze area) (1.5 m x 2.3 m (height))	3.4
d _{zz} (distance from maze back wall to front of maze) (m)	4.7
End Maze Exp Rate (R/h) = NU $_{\alpha 0} A_{1\alpha_1 z} / (d_{sec} d_{zz})^2$	0.0015
Sum: (0.0083 + 0.0015) = 0.0023 R/h	
Compares to calculated value of 8E-8 which is 0.0037 R/h	

Vault Comparisons	McGinley's Vault (Excluding Maze)	Perez-Calatayud et al. Vault	Loyola HDR Vault (No Maze)
Inner Width	5 75 m / 10 0 ft	2 m / 10 ft	6.1 m / 20.8
nnei width	0.70 III 7 10.9 it	3111-7-1011	0.111720 n
Inner Depth	5 m / 12 ft	4 m / 13 ft	4.57 m / 15 ft
Nomial Concrete Wall Thickness	35 cm (14 in) - 61cm (24 in) (Depends on Workload!)	50 cm (19.7 in) - 72 cm (28 in)	38 cm (15 in)
Maria Milath	0.4 m / 7.0 h	45	NIA
Maze width	2.4 m / 7. 8 tt	1.5 m / 5 n	N∕A
Maze Length	8.5 m / 28 ft	4.75 m / 15.6 ft	N/A
Lead Door Thickness	N/A	N/A	4 45 cm (1 75 in)