Tomotherapy Vault Design

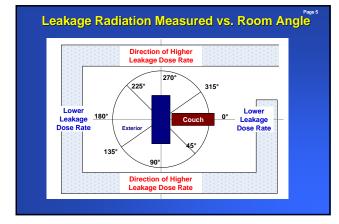
Melissa C. Martin, M.S., FACR, FAAPM 2007 Summer School: Shielding Methods for Medical Facilities American Association of Physicists in Medicine July 29, 2007

Helical Tomotherapy

- Delivers IMRT with beam geometry resembling diagnostic CT
 - 6 MV slit beam of radiation continuously rotates around patient
 - Patient continuously moves through the beam

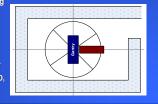
Beam dimensions

- Maximum beam 40 cm by 5 cm
- » Projected at isocenter 85 cm from target
 Slice width 4 mm to 5 cm wide in inferior-superior patient direction
- » Defined by movable tungsten jaws
- Multi-leaf collimator (MLC) collimates beam traverse to patient motion
 - » 64 adjustable leaves each project 6.25 mm to isocenter
 » MLC provides range of intensity modulation



Inherent Linear Accelerator Shielding

13 cm lead beam stopper


- Primary beam attenuation 4.1 x 10⁻³ measured by TomoTherapy
 Measurement is consistent with:
 - $10^{(-13/5.7)} = 5.2 \times 10^{-3}$ (using 5.7 cm TVL from NCRP 151)
- Lead disks provide back shielding (> 90° from central axis)
- Tungsten fixture provides shielding at smaller divergent angles

² Balog et. al., "Helical TomoTherapy Radiation Leakage and Shielding Considerations", Medical Physics 32 (3), 710-719 (2005)

Leakage Radiation Measurement Approach

- All measurements are relative to the calibration field
 - Dose at isocenter 85-cm from the source at a depth of d_{max} (1.3 cm)
 - Measured with 5.0-cm field width (i.e., with all MLC leaves open)
- 1 cGy for calibration field is equal to 1 monitor unit (MU)
- Leakage is measured with all MLC leaves closed
 - Measured with gantry rotating
 Measured as a function of room angle and radial distance from isocenter
 - Measured in 15° increments from 0° to 180°
 - » Maximum is near 90°/270°
 - Measured 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 m from isocenter

TomoTherapy Hi•Art System®

Measured Leakage Radiation Relative Calibration Output

Room		Dis	tance from	Isocenter	(m)	
Angle (deg)	1	1.5	2	2.5	3	3.5
0	7.70E-05	3.50E-05	3.20E-05	1.30E-05	9.70E-06	5.80E-06
15	7.70E-05	4.90E-05	3.60E-05	2.90E-05	2.40E-05	2.00E-05
30	8.80E-05	6.70E-05	5.10E-05	4.90E-05	3.90E-05	3.50E-05
45	1.10E-04	9.50E-05	6.90E-05	5.50E-05	4.90E-05	4.40E-05
60	1.80E-04	1.50E-04	9.60E-05	8.50E-05	7.20E-05	6.20E-05
75	3.30E-04	2.90E-04	1.40E-04	8.80E-05	6.50E-05	5.70E-05
90	1.80E-03	6.40E-04	2.30E-04	1.40E-04	8.20E-05	5.30E-05
105	1.60E-03	5.40E-04	2.70E-04	1.50E-04	9.50E-05	6.00E-05
120	3.00E-04	1.50E-05	1.30E-04	6.80E-05	5.00E-05	3.90E-05
135	1.00E-04	8.80E-05	4.70E-05	3.20E-05	2.50E-05	2.10E-05
150	5.00E-05	3.30E-05	3.40E-05	2.80E-05	2.50E-05	2.30E-05
165	3.00E-05	2.20E-05	2.00E-05	1.60E-05	1.60E-05	1.50E-05
180	7.70E-05	5.50E-05	3.20E-05			

¹ TomoTherapy Hi•Art System® Site Planning Guide

Measured Leakage Radiation Relative Calibration Output Normalized to 1 meter

Measured leakage × (distance from isocenter)²

Room	Distance from Isocenter (m)								
Angle (deg)	1	1.5	2	2.5	3	3.5			
0	7.70E-05	7.88E-05	1.28E-04	8.13E-05	8.73E-05	7.11E-05			
15	7.70E-05	1.10E-04	1.44E-04	1.81E-04	2.16E-04	2.45E-04			
30	8.80E-05	1.51E-04	2.04E-04	3.06E-04	3.51E-04	4.29E-04			
45	1.10E-04	2.14E-04	2.76E-04	3.44E-04	4.41E-04	5.39E-04			
60	1.80E-04	3.38E-04	3.84E-04	5.31E-04	6.48E-04	7.60E-04			
75	3.30E-04	6.53E-04	5.60E-04	5.50E-04	5.85E-04	6.98E-04			
90	1.80E-03	1.44E-03	9.20E-04	8.75E-04	7.38E-04	6.49E-04			
105	1.60E-03	1.22E-03	1.08E-03	9.38E-04	8.55E-04	7.35E-04			
120	3.00E-04	3.38E-05	5.20E-04	4.25E-04	4.50E-04	4.78E-04			
135	1.00E-04	1.98E-04	1.88E-04	2.00E-04	2.25E-04	2.57E-04			
150	5.00E-05	7.43E-05	1.36E-04	1.75E-04	2.25E-04	2.82E-04			
165	3.00E-05	4.95E-05	8.00E-05	1.00E-04	1.44E-04	1.84E-04			
180	7.70E-05	1.24E-04	1.28E-04						

Maximum Normalized Leakage is ~8 × 10⁻⁴

- Maximum occurs near 90° / 270° (i.e., near gantry)
- Consistent with standard 0.1% SSR Part X requirement
 But without the factor of 4 or 5 margin typical for most linacs

	1.4E-03 -	$\overline{}$					105 Degree	s
meter	1.2E-03 -						90 Degrees 75 Degrees	
10 1	1.0E-03 -						60 Degrees	
	8.0E-04 -							
eakage Normalized	6.0E-04 -	المرجع الم				*	~	4
ige N	4.0E-04 -		;		Î			_
Leak	2.0E-04	· · · · ·						_
	0.0E+00 -							4
	1	1	.5 Distar	2 : Ice from Isocei	2.5 nter (m)	3		3.5

Effective Contribution of Primary Beam is ~1% of Leakage

- Primary beam with maximum aperture is 6.3% of leakage
 - Measured with 40 cm x 5 cm field size
 - Measured at 90° room angle
 - Measured 2.5 m from isocenter
- Effective primary contribution at least 4X less than 6.3%
 Average leakage relative primary increases by the IMRT factor (16)
 - Inverse square law rolloff for primary is slower than for leakage
 Average distance from target to measurement location is larger for primary (impact < 2X)
 - Primary TVL is somewhat larger than leakage TVL (impact < 2X)
- Shielding for 0.1% leakage is sufficient for both leakage and primary contributions

Maximum Effective Contribution of Scatter is ~4% of Maximum Leakage

15 30 45

Relative Calibration Field Open-Closed Max % Clinical (Scatter) Increase Increas

159% 158% 116% 103% 88% 71% 13% -7% -27% 94% 112% 10% 10% 7% 6% 6%

4% 1% 0% -2% 6% 7% 12%

Radiation Leaves Leaves Closed Open

Open 8.30E-0 9.30E-0 1.10E-0 1.40E-0 1.40E-0 2.40E-0 2.60E-0

2.50E-0

10E-0

20E-0

1.40E-04 2.30E-04

2.30E-04 2.70E-04 1.30E-04 4.70E-05 (Scatter) 5.10E-05 5.70E-05 5.90E-05 7.10E-05 8.40E-05 1.00E-04 3.00E-05

3.00E-05 -2.00E-05 -3.50E-05 4.40E-05 3.80E-05

- Scatter measurements
 Measured with maximum
 - 40 cm x 5 cm aperture
 - Measured with large phantom at isocenter
 - Measured 2.0 meters from isocenter
- Most important room angles: 75° - 105°
 - Both leakage & scatter
 - contribution largest near 90°
- Clinical scatter increase is maximum scatter increase divided by IMRT factor (~16 typical)

Leakage, Scatter & Primary Combined Dose Rate Summary

- Measured leakage dose rate normalized to 1 meter is ~0.08% of the leakage workload
 W₁ = W × IMRT Factor
- Effective contribution of primary beam to shielded dose rate is typically ~1% of leakage dose rate
- Effective contribution of scatter to shielded dose rate is typically ~4% of leakage dose rate

Combined dose rate is less than 0.1% of leakage workload (Normalized to 1 m from isocenter)

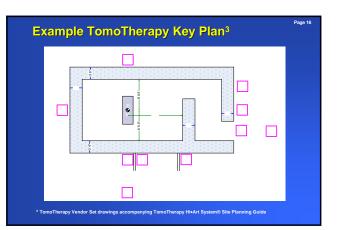
Contributors to TomoTherapy IMRT Factor

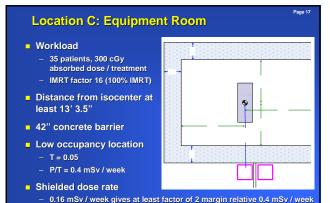
- Modulation factor (MF)
 - Defined as the maximum leaf open time divided by the average leaf open time for those leaves that do open during a treatment
 Average MF is less than 2.0 for helical tomotherapy
- Average number of MLC leaves that open during treatment
 16 of the 64 leaves is typical
- Average slice width
- Typical 2.5 cm vs. 5.0 cm maximum
- IMRT factor = 16 is typical value for TomoTherapy
 - MF (2) × (64 / 16) leaves × (5.0 cm / 2.5 cm) = 16
 - Up to 2X higher for facility that specializes in certain procedures

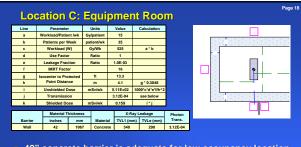
IMRT factor of 16 is reasonable assumption for typical facility Balog et. al., "Helical TomoTherapy Radiation Leakage and Shielding Considerations", *Medical Physics* 32 (3), p. 714 (2005)

Leakage Workload

700,000 MU weekly workload recommended by Balog et. al.

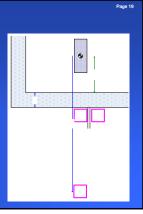

Page 14


- Assumes 5 minutes per patient at 800 cGy / minute
- Consistent with 35 patients under treatment, IMRT factor = 16, and absorbed dose of 250 cGy delivered at the isocenter per patient
- Appropriate weekly workload can vary depending on patient workload and clinical case load
 - e.g., with NCRP 151 default 3 Gy absorbed dose per patient treatment and IMRT Factor = 16
 - » 840,000 MU per week with 35 patients
 - » 720,000 MU per week using NCRP 151 default 30 patients
 - IMRT factor may be higher or lower than 16 depending mix of procedures


Leakage workload calculated with IMRT factor 16 is reasonable assumption for typical facility

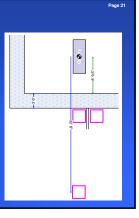
Simplified Shielding Calculation Assumptions for Tomotherapy

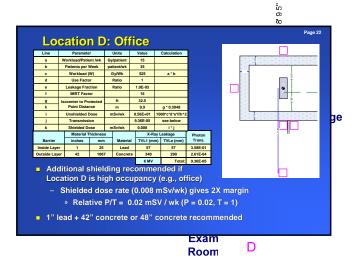
- Calculate shielding like standard as 6 MV accelerator with beamstopper
- i.e., based on dose rate 0.1% of leakage workload
- Assume IMRT Factor of 16 with 100% IMRT
- Factor of at least 2 margin is recommended for barriers adjacent to gantry
 - To account for variation in construction material density
 - Margin unnecessary for most linear accelerator types since leakage is typically 4X less than 0.1% of absorbed dose at isocenter
- Margin not needed for barriers in direction of patient movement
 - Leakage is well less than 0.1% in this direction

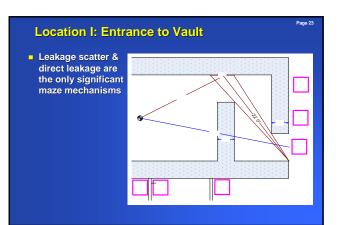


 42" concrete barrier is adequate for low occupancy location like mechanical room (C) or exterior wall (F)
 Shielded dose rate (0.159 mSv/wk) gives greater than 2X margin
 » Relative P/T = 0.4 mSV / wk (P = 0.02, T = 0.05)

Location D: Exam Room


- Larger distance from isocenter than mechanical room: 32.5 ft
- Same 42" concrete barrier
- Higher occupancy location than mechanical room
 - P/T = 0.1 mSv / week
- Shielded dose rate
 - 0.027 mSv / week
 - Gives at least factor of 2 margin




a b	Paramete Workload/Patie Patients per V	nt /wk Veek	Units Gy/patient patient/wk	Value 15 35 525	Calculation			
c d	Workload (Use Facto	,	Gy/Wk Ratio	525	a*b			
e	Leakage Frac	tion	Ratio	1.0E-03				
f	IMRT Fact	or		16				
g	Isocenter to Pro		ft	32.5				
h	Point Distar	nce	m	9.9	g*0.3048			
1	Unshielded E	lose	mSv/wk	8.56E+01	1000°c*d*e*f/h^2		4.1 + C + 1 + C + C + C + C + C + C + C	
j	Transmissi			3.12E-04	see below			
k	Shielded Do	ose	mSv/wk	0.027	1*1			
	Material T	hicknes	5	X-R	ay Leakage	Photon		
Barrier	inches	mm	Materia	al TVL1 (m	m) TVLe (mm)	Trans.		
Wall	42	106	7 Concre	te 340	290	3.12E-04		
 42" concrete is adequate for partial occupancy location like exam room 								
 Shielded dose rate (0.027 mSv/wk) gives nearly than 2X margin » Relative P/T = 0.04 mSV / wk (P = 0.02, T = 0.5) 								

Location D: Office

- Dose rate with 42" concrete is inadequate for full occupancy location
 - 0.027 mSv/wk vs. 0.02 mSv/wk P/T
- Calculation modified to assume 1" lead added to wall
 Increase in wall width to 48" is
- lower cost alternative
- Shielded dose rate
 0.008 mSv / week
 - Gives at least factor of 2 margin

		: Leakage Scatt Calculation	er Ui	nshie	lded
Line	Symbol	Parameter	Units	Value	Calculation
а	MV	Machine X-ray Energy	MV	6	
b	w	Workload	Gy/wk	525	
C		Leakage Fraction	%	0.10%	
d		IMRT Factor		16	
e d _{sec}	d	Distance from target to wall at maze end	ft	19	measured
	usec	Distance from target to wall at maze end	m	5.79	d * 0.3048
g	d,,	Distance from wall at maze end to door	ft	22	measured
h	uzz	Distance from wall at maze end to door	m	6.71	f * 0.3048
i	w ₁	Wall width seen from door	ft	5	measured
j	W1	waii width seen from door	m	1.52	h * 0.3048
k	h	Room height	ft	10	measured
L		Koolin height	m	3.05	j* 0.3048
m	α,	1sr reflection coefficient	1 / m²	0.0183	Table B.8b with 1.4 MV 0° Reflection angle
n	A ₁	Scatter area	m²	4.6	i*k
0	U	Use Factor		1	Calculation does not depend on orientation
р	HLS	Leakage scatter unshielded dose rate	mSv/wk	4.73E-01	1000 * b * o * c * d * m * r / (f^2 * h^2)

Location I: Direct Leakage Unshielded Dose Rate Calculation

	Line	Param	Units		Value	Calculati	on				
	а	Machine X-r	MV		6						
	b	Workloa	Gy/Wk		525						
	с	Use Fa	Ratio		1						
	d	Leakage F	%		0.10%						
	е	IMRT F			16						
	f	Isocenter to	ft		31.0						
	g	Point Distance		m		9.4	f * 0.3048				
	h	Unshielded	mSv/wk	9.	41E+01	1000*b*c*d*e	/ g^2				
	i	Wall Trans		2.	66E-04	see below					
	j	Inside of Doo	r Dose Rate	mSv/wk	2.	50E-02	h*i				
Ma	Maze Direct Leakage Maze Wall Transmission										
	Material Slant Thickness Thickness			Pa		t Scatter	Photon				
	Barrier	inches	mm	Material		TVL1 (mm)	TVLe (mm)	Trans.			

 Maze Wall
 42
 1087
 Concrete
 340
 290
 2.66E-04

 Slant Angle:
 11 deg
 6 MV
 Total:
 2.66E-04

Page 26 Location I: Maze Door Transmission Calculation amission for Doo al Slant ess Thickness s mm Maze Leakage Leakage Scatter Material Thickness inches 0.5 Photo Trans TVL1 (mm) TVLe (mm) 13 8 2.59 Slant Angle: 0 deg 0.3 MV Total: 2.59E-02 Maze Direct Leakage Transmission for Doc Material Slant Thickness Thicknes Direct Leak Material Thickness inches Photon Trans. TVL1 (mm) TVL Barr Do 0.5 13 57 57 5.99E-01 Slant Angle: 0 deg 6 MV Total: 5.99E-01 aze Shi d Dose at Doo Leakage Direct Scatter Leakage Units Line Parameter Calculation Total Unshielded Dose Rate mSv/wk 4.73E-01 2.50E-02 а Energy for TVL Transmission MV 0.3 6.0 2.59E-02 5.99E-01 mSv/wk 0.01224 0.01499 b see above Shielded Dose Rate a*c d Total Shielded Dose Rate mSv/wk 0.0272 Sum Row d

Page 28

References

- Balog et. al., "Helical TomoTherapy Radiation Leakage and Shielding Considerations", *Medical Physics* 32 (3), 710-719 (2005)
- TomoTherapy Hi•Art System® Site Planning Guide
 Including accompanying drawing set

Contact Information

Page 27

Melissa C. Martin, M.S., FACR, FAAPM Certified Medical Physicist Therapy Physics Inc. 879 W 190th Street, Suite 419, Torrance, CA 90248 Office Phone: 310-217-4114 Office Fax: 310-217-4118 Cell Phone: 310-612-8127 E-mail: melissa@therapyphysics.com