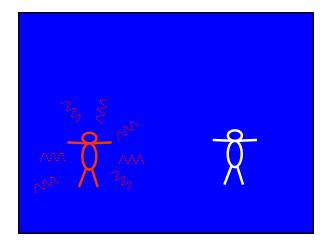
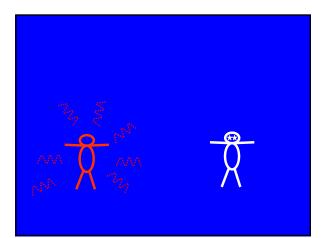
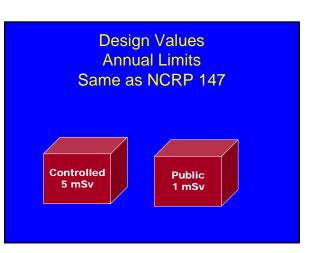
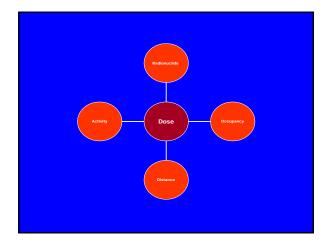
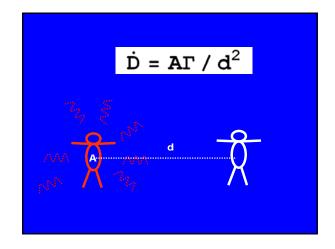

PET Shielding

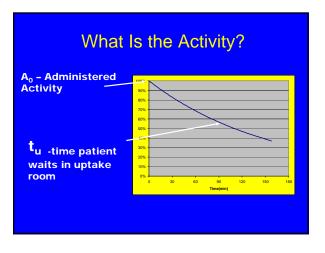

G. Donald Frey, Ph.D.

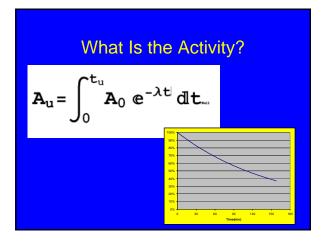

Department of Radiology Medical University of South Carolina Charleston, SC



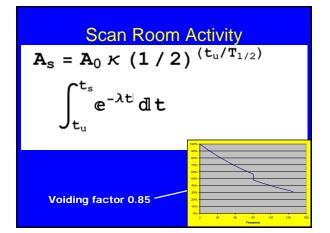

AAPM Task Group 108: PET and PET/CT Shielding Requirements

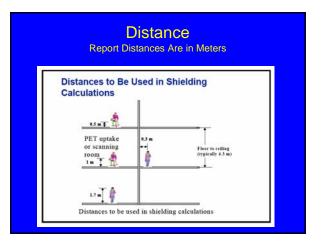

Mark T. Madsen Radiology, University of Jona Jan A. Andorson Radiology, University of Texas Southwest Texas Medical Center at Dallas James R. Halama Nuclear medicine, Layola University Medical Center Jeff Klack Antainis, Inc. Douglas J. Simpkin Radiology, S. Lake's Medical Center John R. Volaw Radiology, Euroy: University Richard E. Wandt III University of Texas MD Anderson Cancer Center Lawrence E. Williams Radiology. City of Hope Medical Center Michael V. Voetof Radiology. University of Alabama at Birmingham Medical Center (Received 21 July 2005; revised 17 October 2005; accepted for publication 18 October 2005; published 19 Docember 2005)

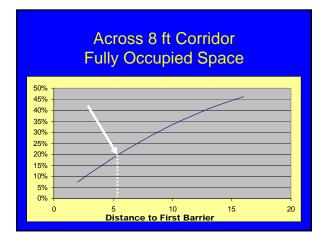


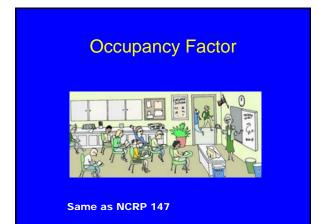


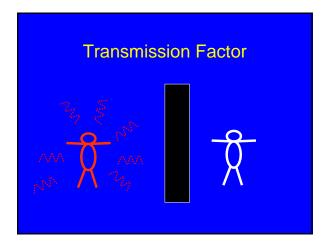
What radionuclides and radiopharmaceuticals should we design for?

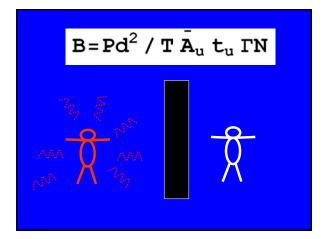

Compa	rison of PET Constants	Decay
Rate Constants		1 Hr Integrated
C-11	0.15	0.063
N-11		0.034
O-15		0.007
F-18	0.14	0.119
Cu-64	0.03	0.024
Ga-68		0.101
Rb-82		0.006
1-124		0.184


F-18 Rate Constants uSv-m²/ MBq-h	
F-18 Rate Constants	Value
Air Kerma Exposure Rate	
Effective Dose Equivalent (ANS-1991)	
Tissue Dose Constant	0.148
Deep Dose Equivalent (ANS-1977)	
Maximum Dose (ANS-1977) Maximum Dose (ANS-1977) Note: The equations in the TG Report correct	0.188 0.188
this for self absorption	

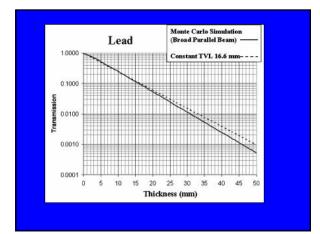


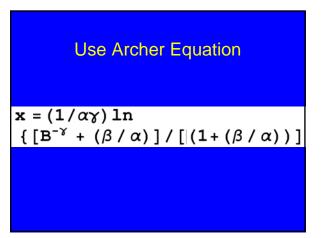

$\bar{A}_{u} = (A_{0} / \ln (2))$ $(1 - (1 / 2)^{(t)})$) $(T_{1/2} / t_u)$
t _u 30 0.91 60 0.83 90 0.76	





Dose_{ann} =
$$\bar{A}_u t_u \Gamma N / d^2$$



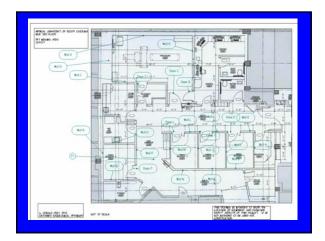


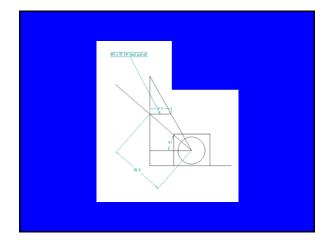
Scan Room

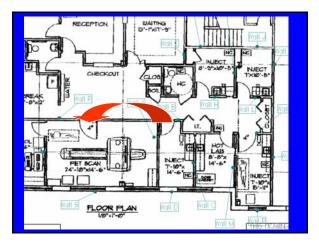
$$Dose_{ann} = \overline{A}_s t_s \Gamma N / d^2$$

 $B = Pd^2 / T \overline{A}_s t_s \Gamma N$

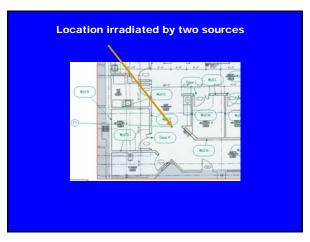
Table V. Fitting	parameter for broad data.	beam 511 keV	ransmission
Shielding material	Alpha (cm ⁻¹)	Beta (cm⁻¹)	Gamma
Lead	1.543	-0.4408	2.136
Concrete	0.1539	-0.1161	2.0752
Iron	0.5704	-0.3063	0.6326

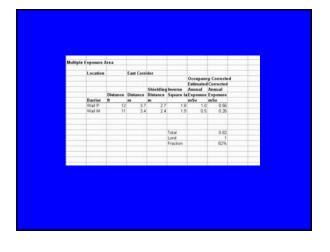


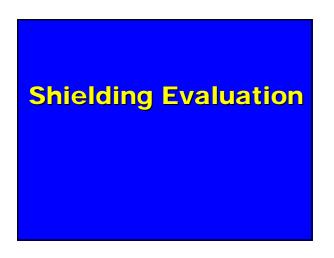

Early Intervention


- Design can greatly influence
- Shielding costs
 Easy of use
 Sites often have 3 dimensional aspects that affect shielding
- Architects often have naïve ideas based on nuclear or x-ray shielding
 There are other radiation protection aspects besides shielding

Other Possibilities

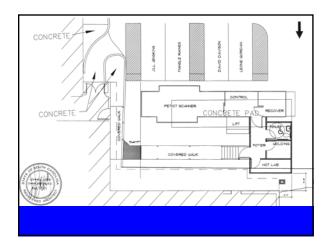

- Maze for uptake rooms
- No window in control room
 - Use video viewing
 - Increase distance
- General assistance with design
 - Lighting
 - Intercoms

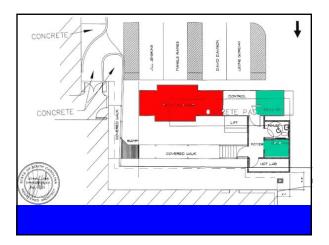

Spreadsheet for Calculations


Medical University of South Carolina 169 Ashley Ave Charleston, SC 29425							
Shielding Design							
PET/CT							
Shielding for PET will provide adequate shie	iding for th	he CT					
Notes			-	-			
PET/CT is on the 3 rd floor of a multi-story I There is occupancy above and below	building						
The shielding for PET will provide adequate	CT shield	ng	-	-			
Shielding is done using the methods descri	bed in AA	PM Repo	108				
Because of the penetrating nature of PET r	idiation ca	ere must b	e taken to pr	ovide shieldir	g around any	penetrations	
Shielding is designed for F-18. If other radi	onuclides	are to be	used the shie	ding should	be re-evaluate	4	
Shielding will be adequate for short lived PE	T agens a	s long as	very large pa	tient number	s are not antic	ipated	

Design Values	Public	1	175+ 145+	per Year	
	Campiled	- 1	and a	per Year	
	_		-		
Radionoclula		F-10			
Hallife		\$10	ma		
Administered activity	_	555	Mbg		
Number of patients per week	_	100	-		Workload data from D Davison
	_				Transie data para di Canada
Time patient will specid in uptake room		90	man		
National room factor		0.76			
	_				
			-		
Patient vording factor		0.05			
The state of the s		~	Croit .		
Time patients spend in scan more Scan norm factor	_	0.44	(1994)		
Scan Room Transfer	_	0.44			

No.L Open Control Person Per	Patients (Injection	2	A319							
Barrier Operation Description Description <thdescription< th=""> <thdescription< th=""> <thde< th=""><th></th><th>er week</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thde<></thdescription<></thdescription<>		er week										
Not Not <th></th> <th>Intercorn should be pro-</th> <th>vided so techno</th> <th>logist can</th> <th>talk with patie</th> <th>nt from cor</th> <th>ridor</th> <th></th> <th></th> <th></th> <th></th> <th></th>		Intercorn should be pro-	vided so techno	logist can	talk with patie	nt from cor	ridor					
Visit Long 9 22 0.2 1 2.601 9.4 0.6 22.1 1.6 0.7 Visit Control 4 2.2 0.7 1.5 0.601 9.4 0.6 22.1 1.6 0.601 9.4 0.6 22.1 1.6 0.601 9.4 0.6 22.1 1.6 0.6 0.5 0.7 1.6 0.6 0.5 0.7 1.6 0.6 0.5 0.7 1.6 0.6	Barrier	Adjacent Space			Оссирансу							Shiel
David Centred 9 22 0.05 1 656001 56 0.33 102.16 in less term David David 14 5 16.20 16 15 0.53.26 in less David 16 0.05 15 0.53.26 in less David David 16 0.05 16 0.05 0.05.26 in less David			(10	(m)			Factor	(cm)	(cm)	(00)	Description	
Nat F 1 1 C 11201 189 15 075 Max Is Made Open Nat Rest National 445 14 1 C 11201 189 15 075 Max Is Mad Open National A45 14 1 C 11201 189 15 075 Max Is Mad Open Calling Calling 15 075 Max Is Mad Open Open State Mad Open Open <td></td> <td></td> <td></td> <td>27</td> <td>0.2</td> <td></td> <td>4.3E-0</td> <td></td> <td></td> <td></td> <td>1/4 in lead</td> <td>Deck</td>				27	0.2		4.3E-0				1/4 in lead	Deck
Val K Mark Conduct 45 14 0.2 1 110101 1193 15 213 14 0.2 Val K Mark 2 75 23 15 3064 10.0 90.0 30.3 Mark 4 Percent 100 90.0 30.4 Mark 4 Percent 100 90.0 30.4 Mark 4 Percent 100 90.0 10.2 10.0 10.		Cerridor	. 9	27		1				0.12	1/G in lead door	
Yad J. Parg 3 75 23 1 6 3000 121 09 213 34 had been at a second s		Prep 1	4.5	1.4	1	5				0.76	3/4 in lead	
ching Ching 15 46 1 1 24601 U36 05 2X 14 had There There is 5 2 1 1 34600 U36 05 12 5X 14 had been is the second of the product of the second of the secon			4.5	1.4	0.2					0.75	3/4 in lead	
Total 195 29 1 586.00 178 112 550.12 Intel Texts Texts Texts ANH									0.9			Deck
Name Appendix All Mention are well Annual of the problem of the theorem of the context	Ceiling				1							
Versite proved Rencent should be provide so its formalized and all with yielder than condor We will all all all all all all all all all	Floor	Floor	9.5	2.9	1	1	9.68-00	2 19.6	1.12	0.60	1/2 in lead	
Versite proved Rencent should be provide so its formalized and all with yielder than condor We will all all all all all all all all all												
Hence shadd to prove as tachneight (an tak with plate then contex	Reem		Injection	3	A314							
Hence shadd to prove as tachneight (an tak with plate then contex	Datients o	of whith	30									
			uded on facher	Daniel ran I	ally with matta	of faires rite	widow .					
				1. U K	对	10	21	215	5	Ż		
					1			T		55"		







PET Shielding Is Complex

- More lead is used than for typical radiographic installations
- The safety factor is much less than for most diagnostic Installations
- Exposure usually occurs from multiple sources

Shielding Evaluation

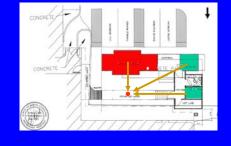
- To Insure
 - Radiation Doses are below the levels required by regulation
 - Are consistent with the shielding design
 - That the shielding is properly installed

My Priorities

- Check for proper construction
- Determine the adequacy of the shielding
- NCRP 147

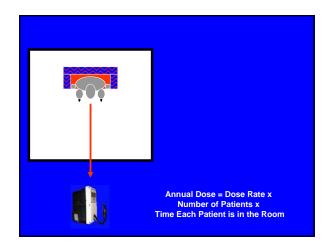
Instrumentation

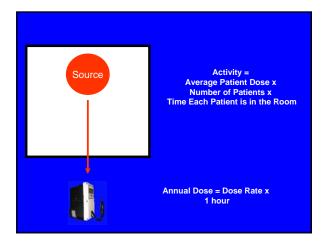
- We have used three types of instruments
 - Large volume ionization chamber
 Radcal 9010 w/ 10X5-1800
 - Portable pressurized ionization chamber
 Innovision 451P
 - Portable Nal(TI) Survey Meter
 - Exploranium GR-135

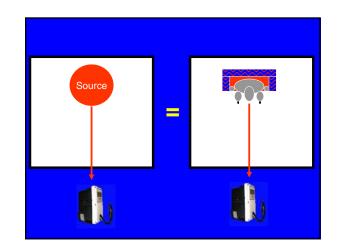

Instrument of Choice

- All three devices gave approximately equal readings
- All could produce accurate measurements
- The portable Nal(Tl) survey meter was somewhat more sensitive and convenient to use

Proper Construction


- Use source in each location
- Use meter to scan for gaps and voids


Evaluating the Annual Exposure at a Location



Scaled Source Method

- Find scaled source strengths that give the same radiation exposure (air kerma) as the total activity that is used in the room
- Place sources in all patient locations
- Measure dose at appropriate

Or

$$AN\tau \rightarrow \dot{R_A} = D(x, y, z) = \dot{D}N\tau \leftarrow A$$

Average Patient Activity Uptake Room

Factors

- Administered activity
- Time patient spends in room
- Number of patients in the room
- Patient self attenuation factor

 $\bar{A}_{u} = \zeta (A_{0} / \ln (2)) (T_{1/2} / \tau_{u}) (1 - (1 / 2)^{(\tau_{u}/T_{1/2})})$

Average Patient Activity Scan Room

- Factors
 - Administered activity
 - Time patient spends in uptake room
 - Fraction of activity voided by patient
 - Time patient spends in scan room
 - Number of patients in the room
 - Patient self attenuation factor
- $\bar{A}_{s} = \zeta \left(A_{0} / \ln (2) \right) \left(1 / 2 \right)^{\left(\tau_{u} / T_{2/2} \right)} \times \left(T_{1/2} / \tau_{s} \right) \left(1 (1 / 2)^{\left(\tau_{u} / T_{2/2} \right)} \right)$

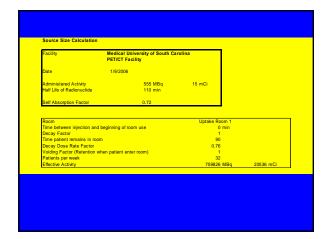
So for all rooms

- The equivalent activity is the product of
 - The average activity
 - The number of patients
 - The time they are in the room

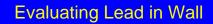
 $\sum_{\mathbf{i}} \bar{A}_{\mathbf{s}} \, \mathbf{N}_{\mathbf{s}\mathbf{i}} \, \tau_{\mathbf{u}} \, + \sum_{\mathbf{i}} \bar{A}_{\mathbf{u}} \, \mathbf{N}_{\mathbf{u}\mathbf{i}} \, \tau_{\mathbf{u}} \longrightarrow \mathbf{D} \, \left(\mathbf{x} \, , \, \mathbf{y} \, , \, \mathbf{z}\right)$

So we need to Scale the Activity

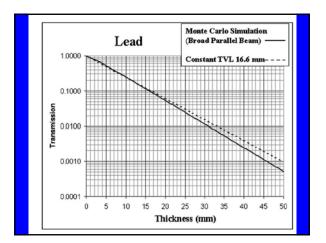
$$\begin{split} &\left(\sum_{\lambda} \bar{A}_{s} \, N_{si} \, \tau_{s} \, + \sum_{\lambda} \bar{A}_{u} \, N_{ui} \, \tau_{u}\right) \middle/ \sigma \, \longrightarrow \, D \, (x, \, y, \, z) \, / \, \sigma \\ & \alpha_{ui} \, = \bar{A}_{u} \, N_{ui} \, \tau_{u} \, / \, \sigma \\ & \alpha_{si} \, = \bar{A}_{s} \, N_{si} \, \tau_{s} \, / \, \sigma \end{split}$$

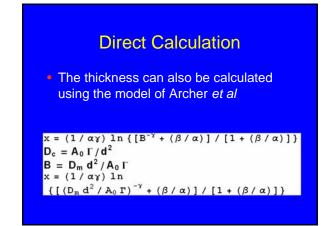

So from all rooms

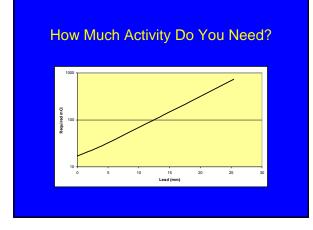
Scaling Factor	500	
	mCi	
	Effective	Scaled
Room	Activity	Activity
Uptake Room 1	20536	41
Uptake Room 2	5134	10
Scan Room	9001	18


Compare Results to Design Values

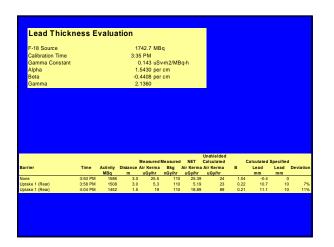
p/TD (x, y, z) ≤ 1


- Correct for Occupancy Factors
- Correct for decay of sources during the measurement




	Location			Design alue (P)	Time	Meter Reading	Time Corrected	Annual	Percent P-Value	Status	Occupancy	Annual Estimate	Percent P-Value	Statu
noide	Control Room	Onerator	Distance v	ance (P)	* 43 AM		Lorrected 1.42	0.71		Pass Pass	1.0			Pass
	Control Room	Secondary Operator		5	8:45		3.30	1.65		Pasa	1.0			Pass
	Door to Conido Entrance Conido			5	8:45		2.87	1.43		Pasa	1.0			Passa
		sor o Uptake Room	Design Limit	5	8:47		5.62	2.81		Pass Fai	1.0			Pass
		o Uptake Room	Annual Limit	50	8:48		19.06	9.53		Pass	1.0			Pass
	Outside Porch			5	8:49	14.10	9.01	4.51	909	Pasa	1.0	0 4.51		Pasa
										Desig	n		Me	ter
	L	ocation					D	istance	e '	Value	(P) T	ime	Read	ding
Insic	de C	ontrol Room (Operator								5 8:	43 AM		2.30
	C	ontrol Room S	Secondary	Opera	ator						5	8:45	5	5.30
	D	oor to Corrido	r .								5	8:45	5	4.60
	E	ntrance Corrio	dor								5	8:47	,	8.90
	C	orridor Door to	Uptake R	oom			Desid	an Limi	t		5	8:48	3 3	30.00
		orridor Door to						, al Limi:			50	8:48		30.00
			о оргаке к	00111			Annu	ai Linni	L I		50	0.40) 3	50.00
	C	utside Porch									5	8:49	9 1	14.10
Т	ime	Annual	Percent				Occui	pancy	An	nual	Perc	ent		
Cor	rected	Estimate	P-Value		Statu		Fac			mate	P-Va	lue	Stat	tus
	1.42	0.71	149	6 Pa	SS			1.00)	0.71		14%	Pass	
	3.30	1.65	339	6 Pa	SS			1.00)	1.65		33%	Pass	
	2.87	1.43	29%	6 Pa	SS			1.00)	1.43		29%	Pass	
	5.62	2.81	56%	6 Pa	SS			1.00)	2.81		56%	Pass	
	19.06	9.53	1919	6 Fa	il			1.00)	9.53		191%	Fail	
	19.06	9.53	19%	6 Pa	SS			1.00)	9.53		19%	Pass	

- Use a source in room
- Measure air kerma at point outside wall
- Determine B
- Evaluate using chart from TG 108
- Calculate Using Archer Equation



Desired distance		3	meters		
Desire A KERMA	ir	10	uSv/hr		
US	Metric	Attenuation	Activity		Unshielded
Inches	mm		MBq	mCi	uSv/hr
0	0	1.000	629	17	10
1/16	1.6	0.829	759	21	12
1/8	3.2	0.674	933	25	15
1/4	6.4	0.430	1465	40	23
3/8	9.5	0.267	2357	64	37
1/2	12.7	0.164	3826	103	61
3/4	19.1	0.062	10168	275	162
1	25.4	0.023	27078	732	430

Some day you will look back upon this and run into a bus