NEUTRON SHIELDING DESIGN AND **EVALUATIONS**

Nisy E. Ipe, Ph.D. Consultant, Shielding Design, **Dosimetry & Radiation Protection** San Carlos, CA, U.S.A. Email: nisy@comcast.net http://www.shieldingconsultant.com/ "Doing the right thing, doing it right"

Nisy E. Ipe, AAPM Summer School , July 28, 2007 www.osha.gov/.../neutron-pro-elect.jp;

OUTLINE

- Photoneutron Production
- Photoneutron Spectra
- Neutron Interactions
- Transport in Accelerator Head
- Neutron Yields
- Neutron Shielding Materials & TVLS
- Neutron Monitoring
- Not covered
 - Mazes
 - Laminated Barriers
 - Skyshine

Nisy E. Ipe, AAPM Summer School , July 28, 2007

PHOTONEUTRON PRODUCTION IN ACCELERATOR HEAD

- Photoneutrons produced by interaction of photon beam with accelerator components
- Produced mainly in the target, primary collimator, flattener and jaws
- /collimators etc. Typical materials are copper,tungsten, gold, lead and iron
- *<u>Neutron production in electron mode is</u> lower than in photon mode Direct production of neutrons by electrons is at least 2 orders of magnitude lower
- Lower electron current Intraoperative devices should be assessed

PHOTONEUTRON PRODUCTION

- Photon must have energy greater than binding energy of nucleus in atom
- S_n=Separation Energy
- Neutron production in primary laminated barrier

Lead has lower S_n than Iron Lead

- Pb-207 (22.1%): $S_n = 6.74 \text{ MeV}$ (NCRP 79) Pb-208 (52.4%) : $S_n = 7.37 \text{ MeV}$
- Iron
- Fe-57 (2.1%): S_n= 7.65 MeV Fe-56 (91.7%): S_n =11.19 MeV
- Lead has a higher neutron yield than iron
- Steel is a better choice for reducing neutron production Nisy E. Ipe, AAPM Summer School , July 28, 2007

PHOTONEUTRON SEPARATION ENERGIES (NCRP 79)						
Element	Atomic Number A	Abundance (%)	$S_n(\gamma,n)$			
Н	2	0.02	2.23			
Cu	63	69.2	10.85			
	65	30.8	9.91			
W	180	0.1	8.41			
182		26.3	8.06			
	183	14.3	6.19			
	184	30.6	7.41			
	186	28.6	7.21			
Au	197	100	8.06			
Pb	204	1.4	8.4			
	206	24.1	8.09			
	207	22.1	6.74			
	208	52.4	7.37			

PHOTONEUTRON PRODUCTION

- Two Processes
- Direct Emission
 - Average energy of direct neutrons is ~ few MeV
 - Spectra peak at energies > 2 MeV
 - Have a $\sin^2\theta$ angular distribution, therefore forward peaked

Nisy E. Ipe, AAPM Summer School , July 28, 2007

- Contributes about 10 to 20% of neutron yield for bremsstrahlung with upper energies of 15 to 30 MV

PHOTONEUTRON PRODUCTION

• Evaporation Neutrons

- Dominant process in heavy nuclei
- Emitted isotropically

L61

target

- Spectral distribution is independent of photon energy for energies that are a few MeV above neutron production threshold
- *Average energy is ~ 1 2 MeV
- Spectra peak at ~ 200 700 keV

Nisy E. Ipe, AAPM Summer School , July 28, 2007

INTEGRAL PHOTONEUTRON SPECTRA FOR 15 MEV ELECTRONS (NCRP 79)

- Photoneutron spectrum from accelerator head resembles a fission spectrum
- Spectrum changes after penetration though head shielding
- **Concrete room scattered neutrons** will further soften the spectrum
- Spectrum outside the concrete shielding resembles that of a heavily shielded fission spectrum
- Average energy is significantly less than inside room
 - <u>*Most neutrons are < 0.5 MeV in</u> energy
 - Application-neutron monitoring

Nisy E. Ipe, AAPM Summer School , July 28, 2007 Courtesy of R.C. McCall

NEUTRON INTERACTIONS

- Almost all interactions are scatters (elastic or inelastic)
- In light materials (hydrogenous) elastic scatter helps thermalize neutrons
- Interaction with hydrogen is like a billiard ball collision
- In heavy materials only inelastic scattering reduces neutron energy
- Absorption important only at thermal energies and in a few resonances in keV region

Nisy E. Ipe, AAPM Summer School , July 28, 2007

TRANSPORT IN ACCELERATOR HEAD

- High-Z shielding material not very effective in attenuating neutrons
- Neutrons lose energy by non-elastic, i.e. inelastic scattering and (n, 2n) reactions (which result in build up of fluence)
- Neutrons undergo elastic scattering in head shielding • resulting in increased path length and therefore more opportunities for non-elastic reactions
- High Z shielding degrades neutron energy
- Absorbed dose or dose equivalent is therefore reduced.

*<u>High-Z material in placed front of hydrogenous shielding</u> makes latter more effective because of degradation of neutron energy

Application: laminated Barriers and door

TRANSPORT IN ACCELERATOR HEAD

- *<u>Maximum amount of neutrons</u> are produced inside head when collimators are completely closed Application: Include small fields for neutron radiation survey
- Neutrons are nearly isotropic and penetrate head in all directions
- *Leakage neutron yield at 1 m from target in target plane should be used for shielding calculations for secondary barriers

Nisy E. Ipe, AAPM Summer School , July 28, 2007

Neutron Energy Classification

- $\bar{\mathbf{E}}_{n} = 0.025 \text{ eV} \text{ at } 20^{\circ}\text{C}$ • Thermal:
- Typically $E_n \le 0.5 \text{ eV}$ (Cd resonance)
- Intermediate: $0.5 \text{ eV} < E_n \le 10 \text{ keV}$ Fast: $E_n > 10 \text{ keV}$
- Epithermal $E_{n}^{*} > 0.5 \text{ eV}$

For therapy linacs neutron spectrum can be divided into two energy regions:

Nisy E. Ipe, AAPM Summer School , July 28, 2007

- Thermal (0 0.5 eV)
- Epithermal (> 0.5 eV)

PHOTONEUTRON YIELD Yield depends on primary electron energy and target material <u>*Siemens 18 MV has lower neutron</u> <u>vield than Varian 18 MV because of</u> ant porto gy E₀, di differing end point energies and target material** Rapid rise in neutron production as primary electron energy is varied through the range of 10 -20 MeV Slower rise above 25-30 MeV Neutron yields are summarized in NCRP 151, Appendix B: Table B-9 **O. Chibani & C.M.Ma, Med. Phys. 30(8) Nisy E. Ipe, AAPM Summer School, July 28, 2007 W.P. Swanson, IAEA 188, 1979

C	OUTSIDE-BEAN TARGE	M NEUTRON	YIELD AT 1 M F KTA LINACS*	ROM
	Energy (MV)	Neutron Yield (%Gy/Gy)	Neutron Yield (mSv/Gy with QF =10)	
	10	0.003	0.3	
	15	0.007	0.7	Use these
	18	0.015	1.5	secondary barriers
	20	0.020	2.0	
	25	0.030	3.0	
*Ele	kta Site Planning Guide	Nisy E. Ipe, AAPM Summ 4513 370 15268062007	er School ,	

0	OUT-BEAM NEUTRON YIELD AT 1 M FROM TARGET (HEAD) FOR							
	SIEMENS LINACS*							
	Energy (MV)	Field Size (cm x cm)	Max. Neutron Yield (%Gy/Gy)	Neutron Yield (mSv/Gy with QF =10)				
	10	0 x 0	0.001	0.1	Use these			
	15	0 x 0	0.004	0.4	values for secondary			
	18	0 x 0	0.007	0.7	barriers			
	20	0 x 0	0.014	1.4				
	23	0 x 0	0.012	1.2				
	*Courtesy of Sieme	ns Medical So	lutionsy USS.AI07		23			

Energy (MV)	Field Size (cm x cm)	Neutron Yield (%Gy/Gy)	Neutron Yield (mSv/Gy with QF =10)	Use
10	20 x 20	0.002	0.2	x 20
	0 x 0	0.001	0.1	valu
15	20 x 20	0.014	1.4	prin
	0 x 0	0.003	0.3	barr
18	20 x20	0.022	2.2	
	0 x 0	0.007	0.7	
20	20 x 20	0.033	3.3	
	0 x 0	0.012	1.2	
23	20 x20	0.049	4.9	
	0 x 0	0.015	1.5	

NEUTRON YIELD FOR VARIAN LINACS *				
Energy (MV)	Neutron Yield ***	Neutron Yield ***		
BJR** 11 (BJR 16)	(% Sv/Gy)	(mSv/Gy)		
10 (10)	0.004	0.04		
15 (16)	0.07	0.7		
18 (23)	0.15	1.5		
20 (25)	0.18	1.8		
*Varian Installation Data Package June 2006 *British Journal of Radiology Nisy E. Ipc, AAPM Summer School , 25 July 28, 2007				

NEUTRON SHIELDING MATERIALS

• Hydrogenous materials are most effective for neutrons

• Concrete (ρ = 2.35 g/cm³)

- Water content is important, at least 5.5% by weight
- 2.2 MeV γ from thermal neutron capture in H
- Average γ energy from neutron capture= 3 MeV
- Maximum γ energy from neutron capture = 10 MeV TVL ~ 8.3"

• Heavy Concrete

- Higher densities due to high-Z aggregates
- TVLs for photons lower than concrete (inverse ratio of densities)
- Typically TVLs for neutrons about the same as concrete except Ledite®* with TVL of ~ 6.4."
 * Atomic International, Frederick, PA Novi E. 196, APM Summer School,

NEUTRON SHIELDING MATERIALS

- Earth ($\rho = 1.1 1.5 \text{ g/cm}^{3}$) "Dirt cheap"
 - Conpacted earth is free from cracks and voids
 - Considerable variation in composition, density and water content
 - Unlike Europe no U.S. regulations regarding protection of fauna
- Polyethylene ($\rho = 0.92 \text{ g/cm}^3$)
 - Very effective because of H content
 - 2.2 MeV γ from thermal neutron capture in H
- Borated Polyethylene (ρ ~ 0.92 g/cm³)
 - Typically 5% boron by weight
 - High thermal neutron capture cross section for boron (3840
 - b/atom) 0.478 MeV γ from thermal neutron capture in boron

Nisy E. Ipe, AAPM Summer School , July 28, 2007

DOSE EQUIVALENT TENTH VALUE LAYERS FOR MAZE DOOR (NCRP 79) Fast neutrons at 100 keV, - Concrete TVL = 15 cm (5.9") - Polyethylene TVL = 4.5 cm (1.8") Concrete
 Dolvethylene NCRP 151 suggests 4.5 cm of borated polyethylene **Thermal neutrons:** Polyethylene TVL = 1.2 cm (0.47") Capture gamma rays Lead TVL= 6.1 cm (2.4") Steel TVL = 13.5 cm (5.31")

- Concrete TVL = 46 cm (18")

CAVEAT

- · Photoneutrons are produced for linacs operating above 6.2 MeV
- Normally if such facilities are adequately shielded for photons with concrete they will be adequately shielded for neutrons
- If shielded with lead or steel, will require concrete (or polyethylene) after the high-z material
- · Order of shielding is important especially for primary barriers because of neutron production in lead or steel

Nisy E. Ipe, AAPM Summer School , July 28, 2007

Neutron Monitoring

- Measurement of fluence (n cm⁻²)
- Measurement of dose equivalent (ambient dose equivalent) or dose equivalent rate
- Measurement of neutron spectrum

Fluence-to-Dose Equivalent Conversion Coefficients for

With permission from NCRP Report No. 151

•Below 20 MeV calculated values uncertainties in

points because of increase in Quality Factor

Instrument Calibration

- Calibration Sources
 - PuBe, $E_{av} = 4.2$ MeV, AmBe, $E_{av} = 4.5$ MeV
 - $-\frac{252}{Cf}$, $E_{av} = 2.2 \text{ MeV}$
- PuF, E_{av} = 0.9 MeV, PuLi, E_{av} = 0.5 MeV
 Use of PuBe and AmBe can lead to systematic
- uncertainties
- Detector calibrated with ²⁵²Cf may be adequate for neutrons in primary beam
- Spectrum outside primary beam and outside room shielding is a heavily shielded photoneutron spectrum
- Assumption of fission spectrum may lead to errors in the above case
 - Nisy E. Ipe, AAPM Summer School , July 28, 2007

Difficulties With Neutron Monitoring Inside Treatment Room

- Photon interference from primary and leakage
 photons
 - Intense photon pulse overwhelms active detector
 - Photon induced responses in detectors from primary beam
- Neutron detection spread over many decades of energy (0.025 eV several MeV)
 - No single detector can accurately measure fluence or dose equivalent over entire range
- Only passive detectors can be used, except at the outer maze area
 - Nisy E. Ipe, AAPM Summer School , July 28, 2007

Neutron Monitoring Outside Room

- Neutron pulse spread over several 100 µs because of moderation
- Neutron spectrum resembles heavily shielded fission source- many low energy neutrons (100's of keV and less)
- Most neutrons have energies less than 0.5 MeV outside well shielded room
- Average neutron energy at outer maze area ~ 100 keV
- Active and passive detectors can be used

Nisy E. Ipe, AAPM Summer School , July 28, 2007

NEUTRON DETECTORS

• Active

- Moderated BF3 Detectors (outside room)
- Rem-meters (outside room)
- Passive
 - Bubble Detectors (inside and outside room, NOT in primary beam)
 - Solid State Track Detectors (inside room, NOT in primary beam)
 - Activation Foils (inside room, and in primary beam)
 - Phosphorus (thermal and fast)
 - Gold (thermal)
 - Indium (thermal)

Nisy E. Ipe, AAPM Summer School , July 28, 2007

ACTIVE: FLUENCE DETECTOR

BF3 Proportional counter

- ${}^{10}B (n_{th}, \alpha)^7 Li, E_0 = 2.31 \text{ MeV}, \sigma = 3840 \text{ barns}$
- α and recoil ⁷Li nucleus produce large pulse, orders of magnitude higher than photon pulse
- Excellent photon rejection, low cost
- Used outside shielded therapy rooms

$E_Q =$ kinetic energy released

$$\begin{split} \sigma &\stackrel{=}{=} thermal neutron cross section \\ Cross sections drop roughly as E_n^{-1/2} \\ Detectors without moderators are sensitive only to thermal neutrons \\ Nisy E. Ipe, AAPM Summer School, \\ \end{split}$$

MODERATED BF3 DETECTOR

- Bare BF3 detector measures thermal neutron fluence rate
- Moderated BF3 measures epithermal neutron fluence rate
- Moderator is a hydrogenous material enclosed in 0.5 mm cadmium eliminates incident thermal neutrons
- Fluence converted with appropriate coefficients to obtain dose equivalent
- Use requires knowledge of spectrum
- Useful to monitor relative variations of neutron field with time (e.g. IMRT)

Nisy E. Ipe, AAPM Summer School , July 28, 2007

ACTIVE: REM-METER

- Consists of a neutron moderator (hydrogenous like material e.g. polyethylene) surrounding a thermal detector
- Moderator slows down fast and intermediate neutrons which are then detected by the thermal detector
- Useful in radiation fields for which spectrum is not well characterized
- Important to have a rough idea of the spectrum Nisy E. Ipe, AAPM Summer School , July 28, 2007

REM-METERS

- Energy response is determined by size and geometry
- Response is shaped to fit an appropriate fluence to dose-equivalent conversion coefficient over a particular energy range
- Most rem-meters over respond in in intermediate energy range
- Pulse pile up at high photon dose rates
- Dead time corrections at high neutron dose rates
- Provide adequate measure of dose equivalent between 100 keV and 6 MeV

Nisy E. Ipe, AAPM Summer School , July 28, 2007

- 4.
- Remove phantom and repeat with phantom Measure at maze entrance and outside barriers for different cantre candee
- gantry angles Use active detector on integrate mode
- 8. Measure photons also

PASSIVE: ACTIVATION DETECTORS

- Neutron absorption by detector results in production of radioactive nucleus
- Radioactivity can be correlated with incident neutron fluence •
- Stable and reproducible Photon interference must be
- considered Thermal neutron detectors
- Gold Indium
- **Threshold detectors**
- Phosphorus (thermal and fast) Described extensively in AAPM Report No. 19

Activation Detectors - Thermal Neutron Detectors

- Bare foil and cadmium covered foil can be used for thermal neutron fluences
- Moderated foil for fast neutrons
- Gold and Indium foils counted with thin window GM, proportional counter, scintillation counter or GeLi detector

Nisy E. Ipe, AAPM Summer School , July 28, 2007

MODERATED ACTIVATION FOILS

- Moderator consists of a cylinder of polyethylene, 15.2 cm in diameter, 15.2 cm in height Covered with 0.5 mm of cadmium (or with boron shield)
- Moderator provides an energy independent thermal neutron fluence, proportional to incident fast fluence
- For in beam exposures:
- r in beam exposures: Use only at energies ≤ 20 MV because of photon induced response in cadmium and moderator lining Field size wide enough to irradiate entire moderator
- Distance between moderators should be 2X diameter of the moderator

Nisy E. Ipe, AAPM S July 28, 2

ACTIVATION DETECTORS - THRESHOLD DETECTORS

- Radioactivity produced by fast neutron interaction when neutron energy is above some threshold
- Phosphorous counted with liquid-scintillation counter
- Tedious process

Nisy E. Ipe, AAPM Summer School , July 28, 2007

Activation Foils (AAPM Report No. 19)						
Reaction	Cross Section (b)	Percent Abundance	Product Half Life	Decay Radiation (MeV)	Branching Intensity	
¹¹⁵ In (n _{th} ,γ) ^{116m} In	194	95.7	54 m	β ⁻ : 1.00 γ: 0.138 to 2.111	1.00	
¹⁹⁷ Au (n _{th} ,γ) ¹⁹⁸ Au	99	100	2.698 d	β ⁻ : 0.962 γ: 0.412	0.99 0.99	
³¹ P(n,p) ³¹ S Threshold = 0.7 MeV	Varies with energy	100	2.62 h	β ⁻ : 1.48 γ: 1.26	0.99 0.07	
³¹ P (n _{th} ,γ) ³² P	0.190	100	14.28 d	β ⁻ : 1.71	1.00	

BUBBLE DETECTORS, BTI, CANADA • Consist of minute droplets of a superheated liquid dispersed throughout an elastic polymer HOW A BUBBLE DETECTOR WORKS

- Detector sensitized by unscrewing the cap
- Neutrons strike droplets producing secondary charged particles
- Charged particles cause droplets to vaporize, producing bubbles
- Bubbles remain fixed in polymer
- Bubbles can be counted by eye or in automatic reader
- Dose is proportional to the number of bubbles

0 DETECTOR 0 3 0 GAS BUBBLES 0 SOLID

Nisy E. Ipe, AAPM Symmer School http://www.bubbletech.ca/b_page2.htm 54

BUBBLE DETECTORS, BUBBLE TECHNOLOGY INDUSTRIES, CANADA

- Easy to use
- **High sensitivity** • Reusable
- Integrating
- Allow instant visible detection of neutrons
- Isotropic response
- Variations in sensitivity within a batch
- Photon induced effects

http://www.bubbletech.ca/b_info.htm

*Ipe et al, SLAC PUB 4398, 1987. Ipe, AAPM Summer School, http://doi.org/10.1017/101919

SOLID STATE NUCLEAR TRACK DETECTOR NEUTRAK[®] 144, LANDAUER, INC.

- CR-39 (di allyl glycol carbonate) solid state track detector
- Fast neutron option: polyethylene radiator Recoil proton from fast neutron interaction leaves sub microscopic damage trails
- $\begin{array}{l} Thermal \ neutron \ option: \ boron \ loaded \ teflon \\ radiator \ + \ polyethylene \ radiator \\ \ ^{10}B(n_{th}, \alpha)^6 Li \end{array}$
- Detector is chemically etched to reveal tracks
- Tracks are counted in an automatic counter Neutron dose is proportional to number of
- tracks
- Fast: 40 keV to 30 MeV, 0.20 mSv minimum • Thermal : < 0.5 eV, 0.1 mSv minimum

Nisy E. Ipe, AAPM Summer School , July 28, 2007

