Unencrypted login | home

Program Information

First Experiments of a Prototype Device for Simultaneous Imaging and Dose Verification in Radiotherapy

no image available
P Vial

P Vial1,2*, S Deshpande1,3, S Blake2, A McNamara2, L Holloway1,2,3, P Greer4, Z Kuncic2, (1) Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres, NSW, Australia, (2) The University of Sydney, School of Physics, Australia,(3) Centre for Medical Radiation Physics, University of Wollongong, Australia (4) Newcastle Mater Hospital, Newcastle, Australia

TH-C-BRA-11 Thursday 10:30:00 AM - 12:30:00 PM Room: Ballroom A

Purpose: Current model electronic portal imaging devices (EPIDs) used in radiotherapy are optimised for imaging but problematic for accurate dosimetry. The aim of this project is to develop a new EPID capable of simultaneous imaging and water equivalent dosimetry. This work reports our first experimental results.

Methods: A prototype device based on a segmented plastic scintillator (SegmentedPS) was developed. The prototype device was tested in comparison with three other detector configurations, all utilising the same a-Si photodiode array used in conventional EPIDs. The configurations tested were; i) standard indirect configuration with phosphor/copper (STANDARD), ii) direct configuration with 1.5 cm solid water build-up (DIRECT), iii) 2 cm thick sheet of plastic scintillator (PSsheet), and iv) 1.5 cm thick prototype SegmentedPS. The sensitivity, dose response and image quality was assessed in each configuration. The dose response was assessed in terms of field size response and off-axis response relative to reference dose in water measurements at the equivalent depth. The image quality was assessed using an image quality phantom.

Results: The sensitivity of each device relative to the STANDARD configuration was 0.03(DIRECT), 0.63(PSsheet), and 0.35(SegmentedPS). The agreement in field size response relative to dose in water data for square field sizes 4 cm to 15 cm was within 4.8%(STANDARD), 0.9%(DIRECT), 22%(PSsheet), and 1.3%(SegmentedPS). The agreement in off-axis ratios at 15 cm off-axis, relative to dose in water data, was within 23%(STANARD), 4%(DIRECT), 5%(PSsheet), and 4%(SegmentedPS). Image quality parameters (f50/CNR) for each configuration were 0.41/993(STANDARD), 0.30/167(DIRECT), 0.22/125(PSsheet) and 0.23/214(SegmentedPS).

Conclusions: First experiments with the prototype SegmentedPS EPID demonstrated the potential for simultaneous imaging and water equivalent dosimetry. Further design optimisation is required to approach the imaging performance of STANDARD a-Si EPIDs, while maintaining water equivalent dose response.

Contact Email