Unencrypted login | home

Program Information

Real Time Simulator for Designing Electron Dual Scattering Foil Systems


R Carver

R Carver1*, K Hogstrom1,2, M Price1,2, J Leblanc2, G Harris2, (1) Mary Bird Perkins Cancer Center, Baton Rouge, LA, (2) Louisiana State University and A&M College, Baton Rouge, LA

SU-E-T-25 Sunday 3:00:00 PM - 6:00:00 PM Room: Exhibit Hall

Purpose: To create a user friendly, accurate, real time computer simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator should allow for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements.

Methods: The simulator consists of an analytical algorithm for calculating electron fluence and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with a refined Moliere formalism for scattering powers. The simulator also estimates central-axis x-ray dose contamination from the dual foil system. Once the geometry of the beamline is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scattering foil material and Gaussian shape (thickness and sigma), and beam energy. The beam profile and x-ray contamination are displayed in real time.

Results: The simulator was tuned by comparison of off-axis electron fluence profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV and using present foils on the Elekta radiotherapy accelerator, the simulator profiles agreed to within 2% of MC profiles from within 20 cm of the central axis. The x-ray contamination predictions matched measured data to within 0.6%. The calculation time was approximately 100 ms using a single processor, which allows for real-time variation of foil parameters using sliding bars.

Conclusions: A real time dual scattering foil system simulator has been developed. The tool has been useful in a project to redesign an electron dual scattering foil system for one of our radiotherapy accelerators. The simulator has also been useful as an instructional tool for our medical physics graduate students.

Contact Email