Unencrypted login | home

Program Information

The Dosimetric and Clinical Impact of the Metallic Dental Implants On Radiation Dose Distributions in IMRT Head and Neck Cancer Patients

L Wang

L Wang*, L Xing, Q Le, Stanford University School of Medicine, Stanford, CA

SU-E-T-492 Sunday 3:00:00 PM - 6:00:00 PM Room: Exhibit Hall

In H&N cancer patients, the development of oral mucositis is related closely to the radiation dose to the oral cavity. It is generally presumed that the existence of metallic dental implants makes it worse due to the scattering effect of the metal. This study investigates the effects of the dental implants on radiation doses to PTV, tongue mucosa, and other structures for IMRT H&N cancer patients by Monte Carlo (MC) dose calculations.

Two H&N cancer patients who have dental implant and are treated by IMRT technique are selected for the purpose. The BEAMnrc/DOSXYZnrc MC codes are employed for the CT-image based dose calculations. The radiation sources are the validated Varian phase-space files for 6MV linac beams. The CT image artifacts caused by the dental fillings are replaced by tissue material. Two sets of MC calculations for each patient are performed at a calculation statistics of 1%: one treats all dental implants as bones, the other substitutes the implants by metal of either titanium or gold with correct density. Doses in PTV and various tissue structures are compared for the two scenarios.

With titanium implant, there is no significant difference in doses to PTV and tongue mucosa from that when treating implant as bone. With gold implant, the mean dose to PTV is slightly lowered by 1%; the mean dose to tongue mucosa is reduced by less than 0.5%, although the maximum dose is increased by 5%.

The scattering dose from titanium implants is not of concern for H&N patients irradiated by 6MV IMRT beams. For gold implants, the scattering dose to tongue mucosa is not as severe as presumed; and the dose to PTV could be slightly compromised due to the attenuation effect of the metal.

Contact Email