Encrypted login | home

Program Information

Effect of a Single Gold Nanoparticle with Different Sizes Inside a Small Water Phantom


J Jing

J Jing*, H Lin , Z Xiong , Hefei University of Technology, Hefei, Anhui

Presentations

SU-E-T-141 Sunday 3:00PM - 6:00PM Room: Exhibit Hall

Purpose:
This study is to investigate the effects of the gold nanoparticles (GNP), a series of micrometre scale simulations have been constructed with Geant4 to track particles and simulate the effects of those particles as they pass through water phantom.

Methods:

The simulations were used to calculate the number of secondary electrons which are emitted from the particle tracks and the amount of energy which is deposited in the cell tissue. More electrons means that more water molecules can undergo hydrolysis and create potentially dangerous free radical molecules, therefore breaking up DNA and killing off cells or causing damaging mutations.
Results:
For the 20nm GNP, all three proton energies saw a small increase of electrons above the control, while the X-rays nearly tripled the number of electrons in the phantom. For the 50 nm GNP, the 3 and 2 MeV protons saw a small increase again, however the 1 MeV protons saw a decrease in electrons, the X-rays saw a large increase of nearly 4 times the number of electrons. For the 110nm GNP, all three proton energies saw a decrease in the total number of electrons in the phantom, while the X-rays saw an increase of 8 times as many electrons.

Conclusion:
From the range of GNP sizes used, it was found that the X-rays have a larger dose enhancement effect as the GNP size increases, the relation between electron emissions and GNP size was linear. This is because the majority of the dose from the X-rays is delivered to the cell tissue through the initial high energy secondary electrons, any dose lost from the Augerelectrons being trapped inside the GNP volume is small compared to the dose that escapes with the high energy electrons.

Funding Support, Disclosures, and Conflict of Interest: Strategic Priority Research Program of the Chinese Academy of Sciences(XDA03040000), Fundamental Research Funds for the Central Universities(2012HGXJ0057,2013HGXJ0193); Seed Foundation of Hefei University of Technology 2012HGZY0007 and Hefei University of Technology undergraduate innovative experiment project(2012CXCY431)


Contact Email: