Encrypted login | home

Program Information

A New Inverse Planning Framework with Principle-Based Modeling of Inter-Structural Dosimetric Tradeoffs

no image available
H Liu

H Liu*, P Dong , L Xing , Stanford University School of Medicine, Stanford, CA

Presentations

WE-AB-209-2 (Wednesday, August 3, 2016) 7:30 AM - 9:30 AM Room: 209


Purpose: Traditional radiotherapy inverse planning relies on the weighting factors to phenomenologically balance the conflicting criteria for different structures. The resulting manual trial-and-error determination of the weights has long been recognized as the most time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the inter-structural dosimetric tradeoff among with physically more meaningful quantities to simplify the search for a clinically sensible plan.

Methods: A permissible dosimetric uncertainty is introduced for each of the structures to balance their conflicting dosimetric requirements. The inverse planning is then formulated as a convex feasibility problem, which aims to generate plans with acceptable dosimetric uncertainties. A sequential procedure (SP) is derived to decompose the model into three submodels to constrain the uncertainty in the planning target volume (PTV), the critical structures, and all other structures to spare, sequentially. The proposed technique is applied to plan a liver case and a head-and-neck case and compared with a conventional approach.

Results: Our results show that the strategy is able to generate clinically sensible plans with little trial-and-error. In the case of liver IMRT, the fractional volumes to liver and heart above 20Gy are found to be 22% and 10%, respectively, which are 15.1% and 33.3% lower than that of the counterpart conventional plan while maintaining the same PTV coverage. The planning of the head and neck IMRT show the same level of success, with the DVHs for all organs at risk and PTV very competitive to a counterpart plan.

Conclusion: A new inverse planning framework has been established. With physically more meaningful modeling of the inter-structural tradeoff, the technique enables us to substantially reduce the need for trial-and-error adjustment of the model parameters and opens new opportunities of incorporating prior knowledge to facilitate the treatment planning process.


Contact Email: