New ¹²⁵I Brachytherapy Source Dosimetric Characteristics

Because prostate brachytherapy implants are growing in popularity, there is a market for new seeds. The dosimetric characteristics (anisotropy function, radial dose function, and dose rate constant) of a new ¹²⁵I seed have been determined experimentally according to the AAPM Task Group 43 recommendations and were related to the 1999 NIST calibration assigned to this source $[S_{k,99std}]$. Phantoms made of solid water were machined to accommodate the LiF thermoluminescent dosimeters that were used to perform the measurements. Two sizes of chips were used with dimensions 3.1 x 3.1 x 0.8 mm³ and 1.0 x 1.0 x 1.0 mm³. The TLD chips were surrounded by at least 10 cm of Solid WaterTM phantom material to provide full scattering conditions. MD-55* radiochromic film and BANG gel were also used to take measurements. The anisotropy function, $F(r,\theta)$, of the new ^{125}I source was measured at distances of 2 cm, 3 cm, 5 cm , and 7 cm from the source center. These data compared favorably with those from the 6711 and 6702 sources. The radial dose function, g(r), of the new ¹²⁵I source was measured at distances ranging from 0.2 cm to 10 cm. The results indicated a dose rate constant, Λ , of $1.06 \pm 4\%$ cGy•h⁻¹•U⁻¹ for the new ¹²⁵I source as compared to 0.98 cGy•h⁻¹•U⁻¹ and 1.04cGy•h⁻¹•U⁻¹ for the 6711 and 6702 seeds, respectively. Complete dosimetric data are described in this manuscript. Research supported by a contract with Imagyn Medical Technologies Inc.