Fits to Michigan liver data by the CV model. The problem of correlation between the model parameters.

The Michigan liver data were fitted by Jackson's and Niemierko's modifications of the Critical Volume model. The minimum of the logLikelyhood function found by us differs from the one found by Jackson. Considerable correlation between two of the parameters in both model modifications, namely the relative critical volume, v_{50} (or μ_{cr}) on one hand and D_{50} of an FSU, on the other hand is observed.

When Jackson's modification is used, the correlation plots between v_{50} and D_{50} show that if we accept all sets of parameters values for which $l < l_{Jacksonat al}$ then all v_{50} in the range of [0.12,0.55] and D_{50} in the range of [38,340]Gy describe equally well the data (the proper Monte-Carlo investigation may prove it) and one cannot distinguish between them.

Hence, we make the conclusion that either

the data set (DVH,Response) is not full enough in order to decrease the correlation between the parameters

or

parameters correlation is inherent to the model(s) which does not allow the determination of the exact values of v_{50} and D_{50} no matter how full the initial data set (DVH, Response) is. But for each set of (v_{50}, D_{50}) the theoretical NTCP values fit and predict well enough the experiment.