Slide 1

Serial Tomotherapy

Daniel A. Low, Ph.D.
Mallinckrodt Institute of Radiology
Washington University School of Medicine
St. Louis, Missouri

Slide 2

Outline

• Description of Tomotherapy
• Clinical Implementation
 – Commissioning
 – Clinical Setup and Treatment
 – Patient-Specific QA
• Clinical Issues
 – Abutment-region Dosimetry
 – Superficial Doses
 – Whole-Body Doses
 – Room Shielding

Slide 3

Commercial Application

• NOMOS Corporation
 – Multileaf collimator (MIMiC)
 – “Indexing” hardware
 – Treatment planning software
 – QA tools
• >40 users worldwide
Serial Tomotherapy

Slide 4

MIMiC

- 20 pairs of leaves = 20 cm diameter cylinder
- Binary operation (pneumatic)
- Leaves subtend 0.84 (1 cm) or 1.7 cm (2 cm) width
 - Longer targets treated in successive abutted slices (indexes)
- Fluence modulated during arc
- Arcs subdivided into 5 degree bins
- Fluence nearly arbitrary each bin
- Up to 72 independent coplanar beams
- Patient indexed between slices

Slide 5

Crane

- Couch repositioning and immobilization
- Attaches to couch rail
- Position read out using linear digital encoders

Slide 6

Treatment Planning System

- Trade-name Corvus
- Structure delineation/import
- DVH-based optimization user interface
- Simulated annealing algorithm
- Multiple 2-D cross-section views
- DVHs
- Also supports DMLC
Slide 7

Clinical Implementation

- Commissioning
 - Traditional
 - Dosimetric
- Patient setup and treatment
 - Immobilization
 - CT scan acquisition
 - Contour delineation and dose optimization
 - Treatment
- Patient-based QA
 - Dosimetric pre-treatment
 - Positioning verification

Slide 8

Commissioning

- Traditional, e.g.
 - TG 53
 - Patient information
 - Printout accuracy
 - Data transfer
- IMRT
 - Dose distributions
 - Monitor unit determinations

Slide 9

IMRT Dosimetry

- Dosimeters
 - Accuracy and dimensionality conflict
 - Point
 - Ionization chambers
 - TLD chips
 - Others
 - Poor spatial coverage
 - Size vs. dose heterogeneity
 - Response as function of incident fluence angle
Slide 10

IMRT Dosimetry

• Dosimeters (cont’d)
 – Planar
 • Radiographic Film
 – Poor energy response
 • Radiographic Film
 – Radiochromic Film
 – Still difficult to use quantitatively
 – Possible to get 2% precision with 0.1 x 0.1 mm² resolution
 – Excellent for benchmarking

Slide 11

IMRT Dosimetry

• Dosimeters (cont’d)
 – Volumetric
 • Polymerizing gel (Trade name BANG)
 • MRI or optical readout
 • Reasonable sensitivity (1-20 Gy)
 • MRI readout shown to be excellent as relative dosimeter (single experiment yields nearly 1,000,000 1 x 1 x 3 mm³ data points)
 • MRI readout still requires benchmarking for absolute IMRT dose measurements
 • Optical readout requires benchmarking for large volumes

Slide 12

IMRT Dosimetry

• Phantoms
 – Anthropomorphic
 • Geometrically irregular
 • Patient-like structures including heterogeneities
 • Heterogeneities may yield unnecessary dosimetric uncertainties
 • Highly accurate spatial film registration difficult
Slide 13

IMRT Dosimetry

- Phantoms (cont’d)
 - Geometrically regular
 - Easily aligned and registered
 - Precise internal construction
 - Homogeneous internal construction
 - Multiple dosimeters measuring in same dose distribution environment

Slide 14

Patient Setup and Treatment

- Immobilization
 - Dose delivered in sequential slices
 - If patient moves perpendicular to arc during or between slice delivery, large dose heterogeneity results in abutment region
 - Immobilization system should concentrate on longitudinal direction
 - Don’t forget localization to enable smallest possible margins

Slide 15

Patient Setup and Treatment

- Volumetric anatomy measurement
 - Usually done with CT
 - Targets and critical structures delineated

- Optimization
 - Commercial system uses DVH-based system
 - Target and critical structure dose limits entered as 3-point DVHs
 - Pre-filtering of gantry angles
 - Simulated annealing determines individual beam fluences
 - Patient treatment plan written on a floppy disk which monitors number of delivered fractions
Slide 16

Patient Setup and Treatment
- Laser alignment marks placed similar to conventional CT
- Intersection of alignment marks determines coordinate system “Origin”
- Gantry rotation axis usually passes through isocenter, but tool is provided to move axis if necessary
- Patient is aligned to marks, CRANE readouts zeroed
- Patient moved as required by treatment plan

Slide 17

Patient Setup and Treatment
- Accelerator uses normal arc mode
- MIMiC leaves open and close as function of gantry angle (inclinometers)
- MIMiC controlling computer monitors gantry rotation rate and angles to determine of treatment proceeding correctly
- Monitor units or dose are not monitored by MIMiC controlling computer

Slide 18

Patient-Based QA
- Treatment plan yields monitor units
- For same dose, MUs can vary by 40%
- How do we know the MUs are correct?
- MEASUREMENT!
- Patient fluence distribution transferred to QA phantom and dose measured at select points
- Ionization chambers for MU normalization
- Film used for spatial localization
Patient-Based QA

- **Patient Localization QA**
 - How do we know the patient is in the correct location?
 - **PORTAL FILMS**
 - Compared against DRRs from commercial virtual simulation software using same CT dataset and radiopaque markers as treatment plan
 - Use double exposures when possible (with and without MIMiC)

Clinical Issues

- **Abutment-Region Dosimetry**
 - **CRANE indexing precision**
 - Dosimetric consequences of indexing error
 - Intrinsic abutment dose distribution heterogeneity

CRANE Indexing Precision

- Readout precision = 0.01 mm
- Readout made at rack and pinion gears, not at accelerator isocenter
- Couch bearing friction limits precision
- **Measurement:**
 - Radiographs using sequence of open MIMiC field images
 - Purposely change index amount from overlap to underlap
 - Scan film and correlate hot and cold spots to intended couch index movement
 - Fabricate high precision system to provide baseline for relationship between referenced and cold spots and couch index distance (“gold standard”)
 - Also evaluate optical based system: miniCRANE
Slide 22

16.8 mm 16.3 mm 17.2 mm

Slide 23

Index offset (mm)

Dose Error (%)

Gold Standard CRANE

Square = gold standard
Triangle = miniCRANE
Circle = CRANE

Indexing Precision Results

• Standard deviation
 - CRANE = 0.10 mm
 - miniCRANE = 0.08 mm
 - gold standard = 0.02 mm
Consequences of Incorrect Indexing

- Either incorrect indexing or patient movement yields undesired overlap or underlap between successive abutments
- Carol determined dose error 10% mm$^{-1}$
- Measurement
 - 8 cm diameter target
 - Radiographic film (coronal)
 - Purposeful index error 0, ±1, ±2 mm

Dose Error vs Index Error

Slope = 25% mm$^{-1}$
Slide 28

Intrinsic Abutment Dosimetry

- Narrow but divergent beams
 - Unequal matching at abutments
 - Hot and cold spots created
 - Only narrow width
 - Dose heterogeneities are function of gantry angle rotation, off-axis distance, width of leaves ("1 cm" vs "2 cm" modes)
 - Random daily setup error may redistribute and reduce dose heterogeneity magnitude

Slide 29

Intrinsic Dose Heterogeneity Measurement

- Treatment Plans
 - 8 cm cylindrical targets (head phantom)
 - Position relative to isocenter
 - 180°, 240°, 300° arcs
 - "1" and "2" cm modes
- Measurement
 - Radiographic film (coronal)
 - Precise indexing of phantom
 - Densitometry - 0.25 mm laser digitizer

Slide 30

Experimental Layout
Experimental Method

- Determine heterogeneity throughout 20 cm diameter volume
 - Apply smooth fit in x and y
- Position of abutment region in patient
 - Longitudinal position has random error
 - Smooths (distributes) abutment region
 - Model as Gaussian distribution
 - Convolve with abutment hot/cold spots

Measured Overlap Profiles
Slide 34

180°, 1 cm Example

Slide 35

Result Presentation

- 2D contour plot difficult to interpret
- Largest variation in “y” direction
- Show 1-D plots of smoothed dose heterogeneity in “y” direction with superimposed measured data points

Slide 36

180° arc, 1 cm mode

- Plot of dose heterogeneity vs. y (mm) for different σ values (σ = 0 mm, σ = 1 mm, σ = 2 mm, σ = 3 mm)
- Graph showing decreasing dose heterogeneity as y increases
Slide 37

180° arc, 2cm mode

Slide 38

240° arc, 1cm mode

Slide 39

300° arc, 1cm mode
Slide 40

Intrinsic Abutment Summary

Target off-axis distance along y axis required to achieve 90% dose homogeneity

<table>
<thead>
<tr>
<th>Mode</th>
<th>σ=0mm</th>
<th>σ=2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ant post</td>
<td>ant post</td>
</tr>
<tr>
<td>1 cm</td>
<td>5 10</td>
<td>8 10</td>
</tr>
<tr>
<td>2 cm</td>
<td>3 3</td>
<td>5 6</td>
</tr>
</tbody>
</table>

Recommendations

• 2 cm mode yields approx 70% greater heterogeneities than 1 cm, use 1 cm whenever practical
• Keep targets near isocenter
• Use as large a gantry angle as possible
• Periodically monitor couch indexing precision
Future Implementation

- Spiral tomotherapy unit - Mackie
- Abutment region heterogeneities distributed throughout patient
- Improved patient throughput
- On-line images acquired during irradiation may yield tomographic information

Acknowledgement

- This work was supported in part by a grant from the NOMOS corporation