Purpose: To determine a simplified formula to calculate monitor unit (MU) for total body irradiation (TBI) for 6 MV photon beams.

Method and Materials: Patient data were accumulated for TBI with 6 MV photon beams between January 2002 and February 2006. The dependence of MU on SAD, patient thickness, and field sizes were examined for four different linear accelerator types.

Results: MU depends strongly on SAD but is almost independent of the linear accelerator types. Among the 47 patients examined, the depth varied between 6.5 and 21.5 cm (mean and s.d.11.5 \pm 3.6 cm), the field sizes varied between 20 and 50 cm (mean and s.d.35 \pm 8 cm) and SAD varied between 492 and 591 cm. MU is linearly proportional to the thickness of patient separation and, to a lesser extent, linearly dependent on the equivalent patient field size. To deliver 200 cGy, the mean and standard deviation of MU*(100/SAD)² is 113 \pm 11 for all patients examined.

Conclusion: To deliver 200 cGy with 6 MV photon beams, MU can be determined using a formula $MU^*(100/SAD)^2 = 2.63 \text{ d} + 82.6$ to within an accuracy of 5.7% for most of patients examined. To increase the accuracy further, requires taking into account the field size dependence.