Acknowledgements

- B Aydogan, PhD – Univ of Chicago
- P Chan, MD – Princess Margaret
- P Georg, MD – Med University Vienna
- X. Allen Li, PhD – Med College of Wisconsin
- R Miralbell, MD – Instituto Oncologico Teknon, Barcelona and Hopitaux Universitaires, Geneva Switzerland
- AJ Mundt, MD – Univ of California, San Diego
Background

- RT has a long history in the treatment of gynecologic malignancies, notably cervical and endometrial cancer
- The 1st gynecology patient was treated with RT a century ago
RT in Gynecologic Tumors

- Typically a combination of external beam whole pelvic RT (WPRT) and intracavitary brachytherapy (ICB)
- WPRT is used to treat the primary tumor/tumor bed plus the regional lymphatics
- ICB is used to boost the primary tumor/tumor bed safely to high doses
Highly efficacious and well tolerated in most patients

Excellent pelvic control particularly in early stage cervical and endometrial cancer

Adjuvant RT improves outcome of women with high risk features following surgery
IMRT Rationale

- RT → potential toxicities due to the treatment of considerable volumes of normal tissues
 - Small bowel → diarrhea, SBO, enteritis, malabsorption
 - Rectum → diarrhea, proctitis, rectal bleeding
 - Bone Marrow → ↓WBC, ↓platelets, anemia
 - Pelvic Bones → Insufficiency fractures, necrosis
- Reduction in the volume of normal tissues irradiated with IMRT may thus ↓risk of acute and chronic RT sequelae
- ↑dose in “high risk” pts, e.g. node+ disease
- An alternative (or replacement) for conventional brachytherapy
Goals

- To discuss the current status of IMRT treatment planning for gynecologic patients receiving whole-pelvic IMRT.
- To describe emerging areas of research and development in the use of IMRT for gynecologic patients.
Treatment Planning Process

Simulation – **Prone vs. Supine; Type of immobilization**

Target and Tissue Delineation – **Multiple imaging modalities**

Treatment Planning/Optimization – **Number of beams/orientation**

Plan Evaluation – **High conformity vs. dose homogeneity**

Quality Assurance – **Verification of calculated dose**

Treatment Delivery/Verification – **Verification scheme/IG-IMRT**
Immobilization

- Patient in supine position
- Immobilized using alpha cradles indexed to the treatment table
Others favor the prone position

Data from the U Iowa suggest dosimetric benefits to the prone position (Adli et al. Int J Radiat Oncol Biol Phys 2003;57:230-238)

However, may not be possible in patients treated with pelvic-inguinal IMRT

Schefter T, Kavanagh B. Cervical Cancer: Case Study IMRT: A Clinical Perspective 2005
Planning CT Scan

- Scan extent: L3 vertebral body to 3 cm below ischial tuberosities
- Typically use 3 mm slice thickness
- Larger volumes used only if treating extended field whole abdomen or pelvic-inguinal IMRT
Contrast Administration

- Oral, IV and rectal contrast are commonly used
- Bladder contrast is not needed
- IV contrast is important to delineate vessels which serve as surrogates for lymph nodes
- A vaginal marker is also placed
Target Definition

- Clinical target volume (CTV) drawn on axial CT slices
- CTV *components* depend on the pathology
- In all patients:
 - Upper ½ of the vagina
 - Parametria tissues
 - Pelvic lymph nodes regions (common, internal and external iliacs)
- In cervical cancer and endometrial cancer patients with positive cervical involvement, include the presacral region
3D Visualization of the CTV
Target Delineation

- Until recently, no consensus existed regarding target delineation in gynecologic IMRT
- Lack of guidelines or consensus impedes widespread adoption of this approach
- Also impedes development of national cooperative group trials
Consensus Guidelines

- Post-operative pelvic IMRT
- GOG-RTOG-NCIC Target Consensus Meeting, June 2005

Guidelines based on participants’ opinions and published data
Normal Tissues

- Normal tissues delineated depends on the clinical case
- In most cases, include:
 - Small bowel, rectum, bladder
- In patients receiving concomitant or sequential chemotherapy, include the bone marrow
- Others include the femoral heads
- Kidneys and liver included only if treating more comprehensive fields
PTV Considerations

- Organ motion in the inferior portion of the CTV due to differential filling of the bladder and rectum
- Set-up uncertainty
- Appropriate expansion remains unclear; various reports ranging from 0.5 – 1.5 cm
- At Univ of Chicago, we use a 1 cm expansion
- Less is known about normal tissues
- Other centers (e.g., MD Anderson) routinely expand normal tissues
Setup Uncertainties

- Well-characterized in prostate patients
- Only a few studies in gynecologic patients
- Highly dependent upon immobilization devices, therapists experience and positioning (prone vs. supine)
Characterization of Set-up Uncertainties

dx: 0.0 mm
dy: 3.0 mm
RMS: 29.2

Roeske – AAPM 2006
Set-Uncertainties

Single Alpha-Cradle under Patient

\[\sigma_{LR} = 5.4 \text{ mm} \]
\[\sigma_{SI} = 4.7 \text{ mm} \]
\[\sigma_{AP} = 5.0 \text{ mm} \]

Multiple Alpha-Cradles (indexed to table – current system)

\[\sigma_{LR} = 3.2 \text{ mm} \]
\[\sigma_{SI} = 3.7 \text{ mm} \]
\[\sigma_{AP} = 4.1 \text{ mm} \]

Organ Motion

- A concern in the region of the vaginal cuff
- Two approaches are being studied at our institution to address this:
 - IGRT
 - Vaginal immobilization
- Now we simply avoid *tight* CTV volumes and use a 1 cm CTV→PTV expansion
 - Produces very generous volumes around the vaginal cuff
Comparison of CT Scans

Week 3 scan

Treatment planning scan

Small bowel
Bladder
Rectum
Bladder
Rectum
Bladder and Rectal Volumes

Week

Rectum
Bladder
“Integrated Target Volume”

- A creative solution to the organ motion problem developed at MDAH
- Two planning scans: one with a full and one with an empty bladder
- Scans are then fused
- An *Integrated target volume* (ITV) is drawn on the *full* bladder scan (encompassing the cuff and parametria on both scans)
- ITV is expanded by 0.5 cm → PTV_{ITV}
Illustration of ITV

Small Bowel

Integrated Target Volume (ITV)

Bladder

MD Anderson

Jhingran A, et al. Endometrial Cancer: Case Study
IMRT: A Clinical Perspective BC Decker 2005

Roeske – AAPM 2006
Treatment Planning

- 7-9 co-axial beam angles (equally spaced)
- Most centers use 6 MV
- Comparative plans of 6 vs. 18 MV show little or no difference
- However, 18 MV associated with higher total body doses
Treatment Planning

• Prescription dose: 45-50.4 Gy
 • 45 Gy in pts receiving vaginal brachytherapy
 • 50.4 Gy if external beam alone
• 1.8 Gy daily fractions
 • Given inherent inhomogeneity of IMRT
 • Avoids hot spots > 2 Gy
• “Dose painting” (concomitant boosting) remains experimental
 • Potentially useful in pts with high risk factors (positive nodes and/or margins)
Small bowel input DVH based on NTCP data
IM-WPRT Plan Optimization

Current PTV-Specific Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Acceptable</th>
<th>Unacceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conformity</td>
<td>Good</td>
<td>Poor</td>
</tr>
<tr>
<td>PTV Coverage</td>
<td>> 98%</td>
<td>< 96%</td>
</tr>
<tr>
<td>Hot Spots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Within CTV</td>
<td>Edge of PTV</td>
</tr>
<tr>
<td></td>
<td>Preferably within GTV</td>
<td>Rectal or bladder walls in ICB region</td>
</tr>
<tr>
<td>Magnitude</td>
<td><10% (110% dose)</td>
<td>>20% (110% dose)</td>
</tr>
<tr>
<td></td>
<td>0% (115% dose)</td>
<td>>2% (115% dose)</td>
</tr>
<tr>
<td>Cold Spots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Edge of PTV</td>
<td>Within CTV or GTV</td>
</tr>
<tr>
<td>Magnitude</td>
<td><1% of the total dose</td>
<td>>1% of the dose</td>
</tr>
</tbody>
</table>

Roeske – AAPM 2006
A more difficult question is what makes a normal tissue DVH acceptable.

IM-WPRT plans achieve better normal tissue DVHs than WPRT plans. But how good does a normal tissue DVH need to be?

The answer is not clear.
NTCP Analysis
Gynecologic IMRT Patients

\[
NTCP = \frac{1}{1 + \left(\frac{410}{V_{100}}\right)^{3.2}}
\]

Conventional Pelvic RT
IMRT
IMRT Isodose Distribution
CORVUS
North American Scientific
NOMOS

Hi-Art
Tomotherapy, Inc

Eclipse
Varian Medical Systems
IM-WPRT Planning Studies

<table>
<thead>
<tr>
<th>Author</th>
<th>Bowel</th>
<th>Bladder</th>
<th>Rectum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roeske</td>
<td>↓50%</td>
<td>↓23%</td>
<td>↓23%</td>
</tr>
<tr>
<td>Ahamad</td>
<td>↓40-63%*</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Chen</td>
<td>↓70%</td>
<td>↓**</td>
<td>↓**</td>
</tr>
<tr>
<td>Selvaraj</td>
<td>↓51%***</td>
<td>↓31%***</td>
<td>↓66%***</td>
</tr>
</tbody>
</table>

*dependent on PTV expansion used
**data not shown
***reduction in percent volume receiving 30 Gy or higher
Positioning

- All of our studies (set-up uncertainty, organ motion) are based on patients in the supine position
- The \textit{prone} position may offer some additional dosimetric sparing

Prone Positioning

Clinical Experience

- Between 2/00 and 7/06, >200 women were treated with IM-WPRT in our clinic
- Most had cervical cancer, primarily stage IB
- Most underwent definitive RT and, in stages IB2-IIIB, concomitant cisplatin-based chemotherapy
- Endometrial cancer patients were treated following primary surgery
- ICB was administered in ~50% of women following IM-WPRT

Clinical Experience

- Monitored weekly for *acute* side effects
- Worst toxicities were graded on a 4-point scale
 - 0 = none
 - 1 = mild, no medications required
 - 2 = moderate, medications required
 - 3 = severe, treatment breaks, hospitalizations
- Toxicity evaluated in a matched cohort of previous gynecology patients treated with conventional pelvic RT
- Balanced in terms of age, site, radiation dose, chemotherapy and brachytherapy
Acute GI toxicity
IM-WPRT vs. WPRT

P = 0.002

On multivariate analysis controlling for age, chemo, stage and site, IMRT remained statistically significant

\(p = 0.01; \ OR = 0.16, \ 95\% \ confidence \ interval \ 0.04, \ 0.67 \)

Roeske – AAPM 2006
What about tumor control?

- Preliminary data suggests that our IMRT patients have a low rate of pelvic failure.
- Majority of recurrences within the GTV; only 1 in the CTV in uninvolved nodes.
- None of the stage IB-IIA cervix or stage IB-IIB endometrial patients relapsed in the pelvis.
- However, longer follow-up and more patients needed to truly evaluate the impact of IMRT on tumor control.
Future Directions

- Bone marrow sparing IMRT
- IGRT and adaptive radiotherapy in gynecologic IMRT
- IMRT as a replacement of brachytherapy
Gynecologic IMRT
Bone Marrow Sparing Approach

- Focus is on the small bowel and rectum
- Additional important pelvic organ is the bone marrow
- 40% total BM is in the pelvis (within the WPRT fields)
- ↓ pelvic BM dose may ↑ tolerance of concurrent chemotherapy and the chemotherapy at relapse
Increased Dose Conformity with IMRT Reduces Volume of Pelvic Bone Marrow Irradiated
Grade ≥ 2 WBC Toxicity
WPRT versus IM-WPRT Patients

- RT Alone
- RT + Chemo

- WPRT
- IM-WPRT

$p = 0.82$
$p = 0.08$

Brixey et al. *Int J Radiat Oncol Biol Phys* 52:1388-93, 2002

Roeske – AAPM 2006
BM-Sparing IMRT

- Dosimetric analysis of factors associated with acute hematologic toxicity
- 37 cervical cancer pts treated with IM-pelvic RT plus CDDP (40 mg/m²/week)
- Major predictors of hematologic toxicity:
 - Total pelvic BM V-10 and V-20
 - Lumbar sacral spine V-10
- Not volume of the iliac crests

Int J Radiat Oncol Biol Phys (In press)
Two type of marrow:
- Red Marrow – Active
- Yellow Marrow - Inactive

Nearly 40-50% of red marrow is located in the pelvis.

Distribution of red marrow depends on age and sex.

With age, conversion of red to yellow marrow occurs.
Use Tc-99m sulfur colloid SPECT imaging to define active bone marrow.

Tc-99m Bone Marrow Images

Image 0

Image 10

Image 20

Image 30

Image 40

Image 50
SPECT/CT Fusion
SPECT-based BM Sparing

100%
90%
70%
50%
Bone Marrow Sparing

- Patients treated using IM-WPRT have a demonstrated reduction in AHT compared to patients treated with WPRT.
- Further improvements may be achieved by incorporating BM into the planning process.
- Functional BM imaging may have an important role for identifying areas of active BM.
- Future investigations are being designed to determine if functional BM imaging can reduce hematologic toxicities in these patients.
Many cervical tumors rapidly shrink during RT (especially with concomitant chemotherapy)

Tight margins (CTV-to-PTV expansions) early on may be too large by the end of treatment
Impact of Tumor Regression in Cervical Cancer Patients

- 14 cervical cancer pts
- MRI before RT and after 30 Gy
- 46% ↓ GTV

Roeske – AAPM 2006
IGRT/Adaptive RT

- IGRT techniques (cone beam CT) may allow plans to be adapted as tumors respond
- ↑ Bladder and rectal sparing
- No changes made in coverage of the parametrial tissues
- Also allow management of organ motion
Tumors Shrink
Plan Adapts

Bladder

Tumor

Rectum

Week 1

Prescription Isodose

Week 3

Roeske – AAPM 2006
IGRT/Adaptive RT

- University of California San Diego: Clinical trial in gynecology patients assessing
 - Feasibility of on-board imaging (cone beam CT) to improve delivery of IMRT plans
 - Impact of adapting treatment plans to tumor response
Can IMRT Replace ICB?

- IMRT has been used to reduce volume of normal tissues irradiated.
- In selective sites (e.g., head and neck, prostate), IMRT has been used to deliver higher than conventional doses.
- Can the same paradigm be applied to cervical cancer?
Stereotactic Boost Approach

- High dose rate brachytherapy (HDR-BT) boost to the vaginal vault for endometrial cancer or to the primary tumor in cervical cancer are current treatment approaches in gynecologic oncology.

- Goal: To challenge this paradigm by using high-precision extracranial stereotactic radiotherapy with the Novalis.

Patient Immobilization

- Customized vacuum body cast
- A stereoatactic extracranial infrared guided repositioning system (*ExacTrac, BrainLAB*)
- MRI endorectal probe inflated with 60 cc air (for internal immobilization)

R Miralbell, MD – Hopitaux Universitaires
Image Fusion of Bony Landmarks

Roeske – AAPM 2006

R Miralbell, MD – Hopitaux Universitaires
Improvement of the PTV margins with bone registration

Body markers → Bones

X (Rt-Lt): 9.0 → 5.1
Y (A-P): 8.0 → 6.0
Z (Sup-Inf): 6.4 → 3.1

R Miralbell, MD – Hopitaux Universitaires
Planning Comparison

Brachytherapy

Roeske – AAPM 2006

R Miralbell, MD – Hopitaux Universitaires
Preliminary Results

- Treated 21 women with either cervical (9) or endometrial cancer (12)
- Use of this approach to deliver final boost to areas of high risk (vaginal vault, parametria, cervix, etc.) was feasible, well-tolerated and an acceptable alternative to HDR-BT

R Miralbell, MD – Hopitaux Universitaires
Vaginal Immobilization Device

- Early stage endometrial cancer treated with whole pelvic RT and vaginal (cylinder) HDR
- Goal: Use vaginal cylinder-type immobilization device and IMRT
Comparison of HDR vs. IMRT

Comparison of HDR vs. IMRT

HDR

IMRT

PTV

Rectum

Bladder

Roeske – AAPM 2006

B Aydogan, PhD – Univ of Chicago
IMRT vs. HDR

- Maximum rectal doses lower with IMRT vs. HDR (89% vs. 143%, \(p < 0.05 \))
- Mean rectal doses in IMRT also lower than HDR (14.8% vs. 21.4%, \(p < 0.05 \))
- IMRT also resulted in lower maximum bladder doses (66.2% vs. 74.1%, \(p < 0.05 \))
- Plans provided comparable coverage to the PTV with IMRT plans resulting in less dose heterogeneity

B Aydogan, PhD – Univ of Chicago
Definitive radiotherapy (RT) for cervical cancer relies on intracavitary brachytherapy (ICB) for the final tumouricidal boost. (Grigsby et al. 1991, Coia et al. 1990)

About 5 – 10% of these patients are not able to receive ICB. (Bachtiary et al. 2005, Eifel et al 1999)

Delivery of external beam RT boost is limited by normal tissue tolerance.
 - Limiting the boost dose $<< 40$ Gy. (20 - 30)

P Chan, MD – Princess Margaret
12 patients who received CRT boost post large pelvic RT (2001-2003) were retrospectively analyzed.

- RTOG Toxicity graded.

The planning target volume (PTV) were as contoured in the original CRT plans.

- Gross tumour volume (GTV) - the proximal vagina/cervix.
- Clinical target volume (CTV) = GTV + 10/7 mm margin and clinician modification.
- PTV = CTV + 5 mm.

Organs at risk (OAR) - Bladder, rectum, and remaining bowel

Compared IMRT vs. conventional planning.

Comparison of Conventional vs. IMRT Planning

P Chan, MD – Princess Margaret

Roeske – AAPM 2006
IMRT improves PTV conformation by 20%.

IMRT reduces volume of rectum (22%) and bladder (19%) receiving the highest doses (>66% of prescription).

However, IMRT increases volume of tissue receiving lower doses which raises the issues of increased secondary cancer risk. (Hall et al. 2003)
Future Studies

- Prospective IMRT boost trial for gynecologic patients not suitable for ICB – GY03.2
 - 7 patients accrued – all tolerated treatment well.
- A 4 mm margin for cervix movement if daily online imaging is available.
 - Daily online soft tissue imaging.
 - Fiducial marker.
- Dose escalation towards ICB dose.

P Chan, MD – Princess Margaret
Can an IMRT-SIB boost be useful?

- Intracavitary brachytherapy (ICB) may not adequately treat bulky tumors
- ICB may not be efficient in cases where the tumor geometry and patient anatomy make application difficult

IMRT SIB boost

<table>
<thead>
<tr>
<th></th>
<th>Whole Pelvis</th>
<th>Boost</th>
<th>BED Tumor</th>
<th>BED Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv</td>
<td>45 Gy in 1.8Gy/fr</td>
<td>40 Gy (2 LDR)</td>
<td>78.6</td>
<td>139.3</td>
</tr>
<tr>
<td>IMRT1</td>
<td>45 Gy in 1.8Gy/fr</td>
<td>28 Gy in 2.9 Gy/fr</td>
<td>78.6</td>
<td>145.0</td>
</tr>
<tr>
<td>IMRT2</td>
<td>45 Gy in 1.8Gy/fr</td>
<td>26 Gy in 2.8Gy/fr</td>
<td>75.6</td>
<td>139.3</td>
</tr>
</tbody>
</table>

X. Allen Li, PhD – Med Col of Wisconsin
IMRT-SIB Planning Approach

- 20 Gy
- 60 Gy
- 45 Gy
- 25 x 2.4 Gy
- 25 x 1.8 Gy

Roeske – AAPM 2006

X. Allen Li, PhD – Med Col of Wisconsin
Target coverage ranged from 94-95.5%

- Bladder and rectum doses reduced using 60-70 Gy SIB treatment
Conclusions

- IMRT is a useful means of reducing the volume of normal tissues irradiated in gynecologic patients receiving WPRT.
- Our initial evaluation indicate a significant reduction in GI toxicity relative to patients receiving conventional therapy.
- Continued follow-up and critical evaluation are required to validate the long term merits of this approach.
What about the negatives?

- IMRT results in higher volumes of normal tissue receiving lower doses
- Increased MUs result in higher total body doses
- Target and tissue delineation are *time-consuming*
- Few guidelines exist regarding *how* targets should be contoured and plans optimized
- *Long-term* follow-up is not available assessing tumor control and *unexpected* sequelae
- Clinical data are available from only one institution and while prospective no randomized comparisons have been performed