IMRT for H/N Cancer

Todd Pawlicki
Department of Radiation Oncology
Stanford University School of Medicine
Outline

1. Why IMRT for HN cancer
2. Immobilization
3. Tissue segmentation
4. Treatment planning
5. Plan evaluation
6. Summary
Why IMRT for HN Cancer

• Complex anatomical region
 – Normal tissues and targets in close proximity

• Inadequate 3D planning techniques
 – No way to deliver concave dose distributions

• Absence of organ motion
Complex Anatomical Region

- Optic nerves, chiasm, eyes, lenses
- Spinal cord, brainstem
- Parotid glands
- Oral cavity
- Temporal lobes
- Mandible, TMJ
- Larynx, …
Inadequate Conventional Planning

Indications and Contra-Indications

- Cooperative patients
 - No claustrophobia, resting tremors, etc.

- Reduce normal tissue complications
 - Conformal avoidance

- To escalate dose
 - Improve local-regional control

- Avoid unwanted field junctions
Absence of Organ Motion

• Little or no intra-fraction organ motion

• Inter-fraction setup uncertainty can be controlled with usual intervention
Outline

1. IMRT for HN cancer
2. Immobilization
3. Tissue segmentation
4. Treatment planning
5. Plan evaluation
6. Treatment efficacy
HN Immobilization

- GTV and CTV can be very different structures
- Maximize reproducibility
 - Head
 - Chin
 - Mandible
 - Oral cavity
 - Clavicals
 - Supraclavicular nodes
Immbbolization Options
Immbbolization Options

- Masking system with Accuform custom neck mold
- Patient comfort and immbbolization go hand-in-hand
Immobolization Options

- shoulder constraints
Expected Reproducibility

• Locate isocenter in head or upper neck
• Generally, setup error within 3 mm can be achieved
 – 1 – 2 mm in the head and neck
 – 2 – 3 mm in the shoulder region

• However, some variability can be expected
 – Treatment plans should account for those effects

Outline

1. IMRT for HN cancer
2. Immobilization
3. Tissue segmentation
4. Treatment planning
5. Plan evaluation
6. Summary
Aspects of Imaging

– Target volumes

– Normal tissues

– Image fusion
Target Volume Delineation
ICRU 50

Example for NPC

– GTV
 • Gross tumor on MRI and PE

– CTV
 • GTV + margin including, nasopharynx, retropharyngeal nodes, clivus, skull base, inferior sphenoid sinus, pterygoid fossae, parapharyngeal space, posterior nasal cavity and maxillary sinuses

– PTV
 • CTV + 3-5 mm
Target Volume Delineation
ICRU 62

- ITV (internal target volume)
 - $\text{ITV} = \text{CTV} + \text{IM}$
 - IM (internal margin)
 - Due to physiologic variations
 - SM (setup margin)
 - Due to technical factors

- PRV (planning organ at risk volume)
 - Margin added to OARs
Consistent with ICRU Definitions

- GTV-T, GTV-N
- CTV-T, CTV-N1, CTV-N2, etc.
CT Anatomy – Head

- optic nerves
- chiasm
- brainstem
CT Anatomy – Head

- **temporal lobes**
- **brainstem**
CT Anatomy – Head

mandible

parotids

brainstem
CT Anatomy – Head/Neck

Location of inferior brainstem and superior spinal cord
CT Anatomy – Neck
Region of brachial plexus nerve
CT/MR Anatomy

Primarily used for target delineation
CT Anatomy – Neck

Spinal canal vs Spinal cord

Use PRV (ICRU-62) for margin around spinal cord
PET Images

- Malignant cells divide rapidly and metabolize glucose at a higher rate than that of healthy cells

- Attach a positron emitter (fluorine-18) to a glucose analogue

- FDG PET studies depict glucose utilization of the glucose analogue fluorodeoxyglucose
 - Tumor metabolism
CT/PET Images

Multi-modality Image Fusion

- Participate in process before imaging takes place
 - Ensure same position
 - Understand setup/imaging limitations

- Talk with physician about site of interest
 - Location, pre- or post-op, etc.

- Communicate uncertainty of manually fused images
Outline

1. IMRT for HN cancer
2. Immobilization
3. Tissue segmentation
4. Treatment planning
5. Plan evaluation
6. Summary
Before Planning Begins

• Is IMRT appropriate for this case?

• Where is the target?

• What are target doses & acceptable normal tissue doses?
 – What can be compromised?

• What is the plan?
 – Simultaneous integrated boost versus sequential cone down plans?
IMRT Planning

• Same primary target as with 3DCRT
• Regional therapy requires specific identification of nodes
• Simultaneous boost
 – Lower regional dose per fraction (e.g. GTV to 66Gy and nodes to 54Gy both in 30 fractions)
• Sequential boost
 – Same dose per fraction for GTV and nodes
 – Requires two plans
Physician Communication

• Isodose lines are not as smooth as 3DCRT
 – Increases dose heterogeneity, which may affect toxicity, tumor control probability

• You can not specify an isodose line to move by millimeters
 – IMRT planning is not like changing a block edge

• Hot/cold spot will fall within the target(s)
Issues with IMRT Treatments

- Time consuming planning process and quality assurance procedures
- Many factors in plan evaluation of uncertain significance
- Exchanges exposure of larger volumes of normal tissue to low doses for smaller volumes exposed to high doses
Tissue Inhomogeneity Corrections

• AAPM Report No. 85: Tissue Inhomogeneity Corrections for Megavoltage Photon Beams

• 4 – 10% error in relative e- density results in ~2% error in dose

• CT Streak artifacts can be locally significant
 – Do not normalize a plan to a point in this region
 – Little effect on DVH of large structures
Dose Calculation Accuracy

• Two types of dose calculation errors
 – Systematic error (same as in 3DCRT)
 – Convergence error (related to optimization)

• Convergence error
 – The optimization algorithm converges to a solution based on inaccurate beamlets

• Approximate errors at tumor for HN cases
 – Systematic: 0 – 3 %D_{max}
 – Convergence: 3 – 6 %D_{max}
Know Published Dose Limits

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Maximal Dose* (Gy)</th>
<th>Mean Dose (Gy)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>60</td>
<td>-</td>
<td>Emami et al 1991</td>
</tr>
<tr>
<td>Brainstem</td>
<td>54</td>
<td>-</td>
<td>Emami et al 1991</td>
</tr>
<tr>
<td>Optic chiasm/nerves</td>
<td>54</td>
<td>-</td>
<td>Emami et al 1991</td>
</tr>
<tr>
<td>Retina</td>
<td>45</td>
<td>-</td>
<td>Emami et al 1991</td>
</tr>
<tr>
<td>Lens</td>
<td>12</td>
<td>-</td>
<td>Emami et al 1991</td>
</tr>
<tr>
<td>Parotid</td>
<td>70</td>
<td>26</td>
<td>Eisbruch et al 2003</td>
</tr>
<tr>
<td>Larynx</td>
<td>70</td>
<td>≤ 25 – 30</td>
<td>Stanford</td>
</tr>
<tr>
<td>Mandible</td>
<td>65</td>
<td>≤ 35 – 45</td>
<td>Stanford</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>45</td>
<td>-</td>
<td>Emami et al 1991</td>
</tr>
</tbody>
</table>

We recommend lowering these dose limits by 10% when concurrent chemotherapy is used.
IMRT Planning Parameters

- Dose/volume constraints
- Number of beams
- Beam orientation / Table angles
- Tuning structures
- Collimator angle
- Isocenter placement
- Beamlet size / Intensity levels
- Direct modification of intensity maps
Number of Beams

• More beams = Better plan?

• Generally Yes
 – But improvement can be marginal over 7 beams
 – Degree of improvement depends on tumor shape and proximity to critical structures
All plans have the same optimization parameters.
Beam Orientation

• Coplanar vs Non-coplanar
 – Ease of setup
 – Ease of planning
 – Speed of treatment

• Equi-spaced vs Selected angles
 – Entrance through table/immobilization device
Beam Orientation
Collimator Orientation
Collimator Orientation
Tuning Structure

• A structure added just for the purpose of treatment planning

• Provides additional control over the dose distribution in IMRT plans

• Reduce normal tissue dose

• Reduce/Increase target dose
Tuning Structure
Tuning Structure

An added structure to be used in optimization.
Tuning Structure
Tuning Structure

GTV66 and CTV60

CTV54, but will accept a lower dose (ie 52)
Isocenter Placement

Issues

• Sometimes a better plan be achieved by selective isocenter placement
 – Center of GTV vs center of all targets

• Dosimetry and/or QA

• Patient setup
 – Isocenter in region of reliable bony anatomy
Isocenter Placement

Isocenter in geometric center of targets

Isocenter in geometric center of GTV
Isocenter Placement

Choose a reliable anatomical reference point.
Number of Intensity Levels

Lehmann et al. 2000
Direct Modification of Intensity Map

An option provided by some planning systems
Direct Modification of Intensity Map
Direct Modification of Intensity Map

Erase intensity over the RT Eye in all fields
HN IMRT with Supraclav Nodes

• Treating nodes in IMRT
 – Eliminates junction issues
 – Requires extra care to immobilize shoulders
 – Do not treat the supraclav nodes through the shoulders

• Treating nodes with AP field
 – Requires a method to match the IMRT fields
 – Not advised for node positive cases
 – If possible, include SCV field in IMRT optimization
HN IMRT with Supraclav Nodes

Matched below GTV

No need to contour nodal volumes for conventional technique
Matching IMRT to AP SCV (1)

IMRT plan restricted to co-planar beams with standard collimator angle (Varian Col ≤ 180)

50% isodose line on IMRT plan – SCV match line is 2-3 mm inferior
IMRT/AP SCV Single Isocenter

Matching IMRT to AP SCV (2)

Include SCV field in optimization of IMRT plan.
Matching IMRT to AP SCV (2)

Flexibility to control hot, cold or feathered match-line.
Final Comments on Treatment Planning

• Beam energy
 – 4 – 6MV is usually sufficient
 – Sometimes a higher energy PA beam can help to cover supraclav nodes and reduce posterior hot spots

• Skin dose
 – Immobilization masking systems can act as a bolus to produce a severe skin reaction
Outline

1. IMRT for HN cancer
2. Immobilization
3. Tissue segmentation
4. Treatment planning
5. Plan evaluation
6. Summary
Plan Evaluation

• When the planning is “finished”
 – The worst thing you can do

• What are achievable doses
 – An average of 10 HN cases

• Final comments
When The Plan is Finished

• Do not allow the physician to review the plan alone

• Talk through the plan with the physician
 – What is good and bad about this plan?
 – Why did you use those beam angles?
 – Why underdose parts of the target?
 – Why can’t you spare more normal tissue?

• You have to intrude on the physician’s decision making process as much as possible
About Plan Evaluation

• A plan may produce a maximal point dose that exceeds the so-called tolerance dose for a critical structure.

• It is important to review the DVH to determine how much of the critical structure volume receives doses exceeding the specified limit.
 – In many cases, it only correlates to a few voxels and may be acceptable.
About Plan Evaluation

• Hot and cold spots must be identified using the isodose curves on a slice-by-slice basis

• The decision on hot spots should be individualized based on other clinical considerations
 – Previous treatments the region
 – Medical co-morbidities and the use of concurrent chemotherapy
Normal Tissue Constraints

• Optic apparatus < 45Gy max dose
 – Lens < 4-6Gy
• Spinal cord < 45Gy max dose
• Brainstem < 50Gy max dose
• Parotids < 26Gy mean dose
• Oral cavity < 30-40Gy mean dose
• Mandible < 40Gy mean (< Rx Gy max)
• Larynx < 30Gy mean dose
Use All Information Provided By The Planning System

Examples

• 3D structure/dose display for max dose
 – Software search for maximum dose in plan
• Sagittal/coronal isodose display
• Dose profiles
• Color wash
Be prepared to make difficult decisions
Outline

1. IMRT for HN cancer
2. Immobilization
3. Tissue segmentation
4. Treatment planning
5. Plan evaluation
6. Summary
Final Thoughts

• The risk of secondary malignancies is not zero
 – Relative to co-morbidity and the patient’s life style
• Setup uncertainty changes the position and magnitude of hot spots
• Recurrences are mainly in the high-dose regions
• Refinements in the IMRT technique are ongoing
• Real-time adaptive IMRT based-on tumor changes is still in the future
Final Thoughts

• In 2002, approximately 1/3 of the radiation oncologists use IMRT

• In 2004, approximately 3/4 of the radiation oncologists use IMRT

• Implementing IMRT in a community does not require a prohibiting amount of resources