QA FOR IMAGING SYSTEMS USED FOR PLANNING (CT, PET, MR)

Sasa Mutic
Department of Radiation Oncology
Siteman Cancer Center
Mallinckrodt Institute of Radiology
Washington University School of Medicine
St. Louis, Missouri 63110

Outline
- Image Quality Concerns for RT
- Acceptance vs Continuing QA
- Selection of QA tasks
- Division of Labor
- Procedure specific processes
 - Fusion
 - CT
 - MRI
 - PET
- Conclusions

Paradigm Shift
- Imaging equipment in the past was designed for diagnostic radiology and then modified for radiotherapy
- There are new CT scanners that are specifically designed for radiotherapy
- Or they have special features that are designed for radiotherapy
- PET/CT scanners are also designed with RT scanning concerns in mind

Geometric Accuracy
Resolution

- Primary image set for most treatment planning systems
- Used to define anatomic structures, target volumes, and beam shapes and orientations
- Provides density information for heterogeneity based dose calculations
- DRRs for treatment planning and verification
- The major weakness is the limited soft tissue contrast

Computed Tomography

- Used to define anatomic structures, target volumes, and beam shapes and orientations
- Provides density information for heterogeneity based dose calculations
- DRRs for treatment planning and verification
- The major weakness is the limited soft tissue contrast

Magnetic Resonance Imaging

- Excellent soft tissue contrast allows better differentiation between normal tissues and many tumors
- It is not limited to imaging in axial planes
- Disadvantages:
 - Susceptible to spatial distortions
 - Image intensity values do not relate to physical or electron density

SPECT and PET

- Provide information about physiology rather than anatomy
 - Tumor metabolism
 - Differentiation between tumor recurrence and radiation necrosis
 - Regional lung function
- Poor resolution
 - Difficult to delineate target and organ boundaries
 - Difficult to appreciate external contours
CT simulator

- CT scanner with external lasers
- Flat tabletop
- Virtual simulation software

Panorama 0.23T R/T

- Laser bridge
- Spacers allow easy positioning of RF coils
- Flat tabletop insert

High Field Magnet

- 1.5 T superconducting
- Closed bore
- Flat couch insert added
- Housed in radiology, FCCC

PET/CT scanner combined unit

- Multislice CT scanner mated to a PET scanner
- Possibly three scans acquired during procedure
 - Attenuation correction CT
 - PET
 - Treatment planning CT, with contrast if necessary
Adaptive Therapy
Onboard volumetric imaging

MR-Guided
Viewray Renaissance

CT Time Line

- Helical Scanning
- Commercial CT-simulator
- Large Bore SS
- 16 slice sub 0.5
- 64 slice
- Slip Ring
- Dual slice Scanning
- 4-slice 0.5 sec
- 8-slice 0.5 sec
- Large Bore MS

CT Simulator Evaluation

- **Task**
 - Radiation and patient safety
 - CT dosimetry
 - Evaluation of electromechanical components
 - Evaluation of image quality

- **Solution**
 - AAPM report number 39,
 - AAPM TG53 report
 - AAPM TG66 report
Imaging QA in Radiation Therapy

- **Tasks**
 - Patient safety
 - Image performance evaluation
 - Evaluation of electromechanical components
 - Process evaluation – data transfer, image registration, image usage, etc.

- **Scanner location and primary purpose**
 - Diagnostic vs radiation therapy goals
 - Anatomical and biological imaging

Common QA Tasks

- Signal to Noise ratio
- Image Uniformity
- Spatial Linearity
- High-Contrast Spatial Resolution
- Slice Thickness
- Slice Position/Separation
- Image Artifacts
- Laser Alignment
- Couch Alignment
- Quantitative

Image Quality Indicators

- **Quantitative**
 - Phantom Measurements
 - High Contrast
 - Low Contrast
 - Uniformity
 - Spatial Integrity
 - Artifacts
 - Slice thickness
 - Quantitative accuracy

- **Qualitative**
 - Physician Preferences
 - Tumor
 - Normal Structures
 - DRR/DCR Objects
 - Workflow
 - Customized protocols

QA in Radiation Therapy

- Commissioning and establishment of baseline performance
- Periodic quality assurance
 - Daily – Perhaps the most important
 - Monthly
 - Annual
- Patient specific QA
- Process QA
- QA Goals
Commissioning and establishment of baseline performance

• Verification of scanner performance
• Establishment of baseline data
• Verification of manufacturer phantoms and image analysis tools
• Establishment of imaging protocols – using phantoms to understand differences

Image Performance

CT QA

Resolution (High Contrast)

• Ability of the system to record separate images of small objects that are placed very close together

Manufacturer phantom

Third-party phantom

CT QA

Image Performance
Subject Contrast (Low Contrast)

- Ability of a system to resolve adjacent objects with small density differences
- Noise limited

Uniformity and Noise

Measure Daily

True vs. Extrapolated FOV

From impactscan.org report 05071

Evaluation of Extrapolated FOV

From impactscan.org report 05071
Radiation and Patient Safety

- Patient Safety
 - Interlocks
 - Electromechanical
 - Door Interlock
 - CTDI
 - Definition
 - Multislice CT

Electromechanical Components

- X-ray Generator
- Gantry Alignment
- Table Alignment/Accuracy
- Laser Alignment/Accuracy

Electromechanical Components

- X-ray Generator
 - Need a non-invasive meter
 - kV accuracy
 - Timer accuracy
 - mA linearity
 - HVL measurements

CT Simulator Mechanical Alignment
Electromechanical Components

Gantry Alignment/Accuracy
- Gantry tilt accuracy
- Gantry vertical
 - Imaging plane orthogonal to the couch top
- Gantry vertical placement reproducibility
 - Especially important for dual purpose scanners

Table Alignment/Accuracy
- Tested with weight
 - Settle
 - Sag
- Tabletop motion orthogonal/parallel with the imaging plane
- Table positional accuracy/reproducibility
 - Vertical
 - Longitudinal

Laser Alignment/Accuracy
- Lasers orthogonal/parallel with the imaging plane
- Lasers spacing
- Laser positional accuracy
 - Absolute
 - Linearity
 - Reproducibility
- Coordinate system orientation

MR QA
MR QA Tasks

- Signal to Noise ratio
- Image Uniformity
- Spatial Linearity
- High-Contrast Spatial Resolution
- Slice Thickness
- Slice Position/Separation
- Image Artifacts

AAPM Report #28, Med Phys 17, 1990

MR Spatial Distortions

- Inhomogeneity of main magnetic field
- Nonlinearities of the spatially encoding gradient magnetic fields
- Alteration of magnetic fields by imaged objects

Disadvantage of MRI Sim: Distortion

- Bigger patients can produce significant distortions
- Patient was >300 lbs

Courtesy Dennis Mah

Gradient Distortion Correction

- Design trade-offs limit linearity of gradients
 - Can improve linearity, but at loss of performance
- System is optimized based upon design trade-offs
- Compute gradient magnetic field from engineering diagrams
- Derive correction terms for theoretically predicted magnetic field
- Mathematically correct the MR images using correction factors

Courtesy Dennis Mah
Phantom

GDC – Gradient Distortion Correction

Axial Sagittal Coronal

Iso-Error Map

Before GDC

With GDC

Iso Error Map

Before GDC

With GDC
Image Distortion Away from Isocenter

Distortion Corrections

- QA Phantom
 - For evaluating lasers with MR Sim

- Image distortion evaluation phantom
 - The phantom and SW is intended for evaluation of residual geometrical distortions in images.
Quality Assurance in PET

- Whether the camera is a dedicated PET camera or a combined PET/CT camera, the first step for image quality is the detector setup.
- Most PET detectors are composed of detector modules made of scintillator block and an array of 4 PMTs.
- The setup of those block for proper operations includes the adjustments of:
 - Constant Fraction Discriminator (CFD)
 - Timing alignments
 - XY profiles
 - Energy Calibration
 - Look up table for crystal boundary identification.

This step is called the block setup procedure.

Detector Module

- Small crystals for high resolution
- Small gaps for high sensitivity
- Large tubes for fast, stable timing
- Light sharing scheme for position encoding
- Lower cost, better reliability than individual crystals, small tubes.

Normalization

- Every pair of detector does not have exactly the same detection efficiency.
- The fluctuations in detection efficiency from the different lines of response is compensated by the normalization procedure in which a uniform source of activity is used to measure the intrinsic detection efficiency for each line of response and the resulting normalization file is kept on the computer memory.
Position Encoding

- Flood histogram slightly distorted.
- Use look-up table (LUT) to identify the crystal number struck.

SUV Calibration

- Absolute Quantitation is important in PET as it allows to extract the activity concentration in each voxel.
- Performed using a cross-calibration uniform cylinder containing a known amount of radio-activity, most likely a uniform Ge-68 cylinder or a fillable F-18 cylinder.

PET Quality Control

- Quality control is ensured on a daily basis by performing a blank transmission scan (on a dedicated PET scanner equipped with Transmission rods) and compared with a standard blank (one acquired immediately after detector setup).
- Inspection of sinograms to identify missing blocks or suspicious artifacts.

Schedule for Quality Assurance

- Detector Setup (every 3 to 6 months) or anytime a maintenance is performed on the scanner.
- Normalization and calibration following every detector setup.
- Daily inspection of sinograms and daily blank transmission scan.
Multimodality Image Fusion

- Quality Assurance Issues:
 - Image data integrity after transfer
 - Image spatial integrity
 - Image fusion accuracy
 - Overall software functionality

Sterotactic Localization Phantom

- Anthropomorphic head phantom
- Developed for assessment of stereotactic localization accuracy
- Plastic spheres and rods located throughout the phantom
- Coordinates of points within spheres and rods from CT and MR images compared with physical measurements

Conclusion

- Accurate target identification remains one of the greatest avenues for improvement in the radiation therapy treatment planning.
- Multimodality imaging is a valuable tool in this process and its use in radiation oncology is constantly increasing.
- CT will remain the primary imaging modality in RT.
- Implementation of multimodality scanner in radiation therapy setting increases demands on therapy physicists’ expertise in imaging QA.
- Help from diagnostic physicists is very important in this process.