AbstractID: 4683 Title: Visualization of micro-calcifications in a prototype breast CT scanner

Purpose: To evaluate the ability of a prototype breast CT scanner to detect micro-calcifications, and to understand the influence that tube potential and radiation dose have on this.

Method and Materials: Commercially available micro-calcifications (μ Ca) of various sizes (200 to 425 μ m) were embedded inside a 12.7 mm polyethylene tube filled with gelatin (to simulate glandular tissue). The gelatin tube was then placed inside a 14 cm diameter adipose equivalent cylindrical phantom and scanned using various tube potentials (60 to 100 kVp) and tube currents. CT images were reconstructed with both Ramp and Shepp-Logan filters, with a reconstructed voxel size of about 320×320×200 μ m. The μ Ca were then evaluated quantitatively using signal-to-noise ratio (SNR) metric, and subjective appraisals were made as well. A dedicated breast CT visualization workstation was used for subjective evaluation.

Results: Results for 250-280 mm μ Ca imaged at 80 kVp shown that the μ Ca are clearly visible when the rod is scanned by itself, but extremely difficult to locate when placed inside the 14 cm phantom. The visualization of the μ Ca improved overall for larger μ Ca, and overall visualization improves as the radiation levels are increased, as expected.

Conclusion: These initial results suggested that the pixel size may not be a critical factor when determining the ability of the prototype system to visual micro-calcifications, as the current objects scanned are only about 48% of the reconstructed voxel size. Maximum intensity projection (MIP) display for thick-slice imaging was found to be most useful for subjective viewing of micro-calcification clusters.