AbstractID: 4901 Title: Energy response of LiF:Mg,Ti Thermoluminescent Dosimeters to moderately filter x-ray spectra in the range of 20 to 250 kV relative to 60Co

Purpose: To use experimental methods to determine the response of $\mathrm{LiF}: \mathrm{Mg}, \mathrm{Ti}$ thermoluminescent dosimeters (TLDs) irradiated using moderately filtered (M-series) x-ray spectra in the energy range of 20 to 250 kV relative to the response to ${ }^{60}$ Co photons. Also, to determine if $\mathrm{LiF}: \mathrm{Mg}, \mathrm{Ti}$ TLDs are intrinsically linear detectors (i.e. the response is proportional to energy imparted).

Method and Materials: TLDs were irradiated to a known air kerma using the NIST traceable M-series x-ray beams, which were located at an Accredited Dosimetry Calibration Laboratory (ADCL), in the range of 20 to 250 kV . Using each x-ray beam, several sets of TLDs were irradiated to different air kerma levels to take into account any dose non-linearity. TLD response was then compared to that from several sets of TLDs irradiated at corresponding air kerma levels using ${ }^{60} \mathrm{Co}$. The Monte Carlo code MCNP5 was used to correct for scatter from the holder and to determine the predicted/expected TLD response to the experimentally used x-ray beams.

Results: The measured TLD energy response compared to the response to ${ }^{60} \mathrm{Co}$ shows a rapid decrease toward very low photon energies. This response dropped to approximately 0.90 at the lowest effective energy of 11.5 keV . The highest response was found to be 1.37 at an effective energy of 28.5 keV . The results showed poor agreement between measured energy response and calculations using the mass-energy absorption coefficients of pure LiF. A significant increase in measured response compared to calculated response was seen at effective energies higher then 25 keV .

Conclusion: These results demonstrate that the measured energy response differs by up to 14% from Monte Carlo calculations and is highly dependent on the energy of the source. The results also suggest that $\mathrm{LiF}: \mathrm{Mg}, \mathrm{Ti}$ TLDs are not intrinsically linear with energy imparted.

