AbstractID: 5023 Title: Can current prostate IMRT be further improved with immersive virtual reality simulation?

Purpose: To further optimize beam orientations for axial 7-field prostate IMRT plans with enhanced geometric volume analysis utilizing an immersive virtual reality simulation, a software which enhances the visualization of simulation using 3D stereoscopic data projection.

Materials and Method: Eight prostate IMRT cases were selected, in which 7 beams were equi-spaced in the axial plane, for a supine patient. D_{95} of PTV was normalized to 45.0 Gy , the dose used for the initial treatment course. Beam geometry was then further optimized using an immersive virtual reality simulation tool - RTStar (provided by the U. Hull, UK). Consequently, with the exception of the AP field, all beam projections were rotated more anteriorly. Viewing through the most posterior beams, only 50% of overlap between PTV and the rectum was observed. In addition, two anterior oblique beams were tilted off the axial plane, 20° inferiorly, to clear the bladder. Use of the 3D stereo-scopic viewing eliminated risk of collision with the patient. Comparable IMRT plans were then calculated with similar modulation intensity level and number of MLC segments.
Results: A better dose homogeneity of PTV was indicated by 1.9% reduction in global maximal dose ($\mathrm{p}<0.01$), and 1.3% reduction of dose value in 5% high dose region of PTV ($\mathrm{p}=0.02$). Some rectal dose improvement was suggested with a 2.3% lowered hot spot with 10 cc rectum enclosure ($\mathrm{p}=0.04$). The bladder mean dose and the high dose value involving in 30 cc bladder were reduced by $12.9 \% ~(\mathrm{p}<0.01$) and $3.9 \% ~(\mathrm{p}=0.02$) respectively.
Conclusions: Immersive virtual reality simulation benefited the process in optimizing the beams used in this study. A deliverable, non-coplanar beam arrangement improved dose homogeneity of PTV, dose sparing to the bladder and reduced high rectal dose in prostate IMRT.

Research sponsored by Boca Raton community hospital corporation

