AbstractID: 5330 Title: A Practical and Accurate 3D Dosimetry System for Radiation Therapy

Purpose: At present, clinical dosimeters are limited to point or planar measurement, and hence do not provide the comprehensive 3D information ideal for verification of advanced delivery techniques. In this work we present a clinically viable 3D dosimetry system comprising a PRESAGETM dosimeter with read out by an optical-CT scanner.

Method and Materials: A novel solid dosimeter called PRESAGETM has been developed which is composed of polyurethane polymer and radiochromic leuco dyes. PRESAGETM exhibits a stable color change and hence optical density (OD) change when exposed to ionizing radiation. A PRESAGETM cylinder of 16cm diameter x 11cm height was taken through the treatment planning process and a 5-field 6MV conformal radiation treatment was delivered by a Varian® linear accelerator. The radiation induced OD change was imaged in 3D by an optical-CT scanner and this measured distribution was then compared with the corresponding dose distribution calculated by the treatment planning system, as well as to independent measurement by GAFCHROMIC® film. Intercomparisons between the three dose distributions were made by superimposing isodose lines and calculating gamma maps (with criteria 4% dose difference and 4mm distance to agreement).

Results: Given stable temperature and protection from exposure to incandescent light, the dose response of PRESAGETM was observed to be robust to all aspects of the lab. The 3D dose distribution measured in PRESAGETM showed good agreement with the calculated treatment plan (Eclipse) as well as the independent film measurement at all percent doses >30% (i.e. in regions further than 1cm from the wall). Gamma comparison shows that the PRESAGETM measurement agrees with both the calculation in treatment plan and the film measurement within 4% dose difference and 4mm distance to agreement.

Conclusion: This work presents the PRESAGETM/optical-CT combination as a practical 3D dosimetry system which can provide comprehensive quality assurance of advanced treatment techniques.