Design and Performance Characteristics of Computed Radiographic Acquisition Technologies

Ralph Schaetzing, Ph.D.
Agfa Corporation
Greenville, SC, USA
Digital Radiography: Acquisition Technologies in General

- Aerial X-ray Image (Image-in-Space)
- Latent Image
- Digital Image

CONVERT

INTERACT
Digital Radiography: Acquisition Technologies in Context

Operational

Clinical

PATIENT

OUTCOME

Referral

Exam

Acquire

Store

Distribute

Process

Reproduce

Aerial X-ray Image (Image-in-Space)

INTERACT

CONVERT

Latent Image

Digital Image

Treatment

Diagnosis

Exam

Diagnosis

Referral

Treatment

Clinical

Technical

Operational

Socio-Economic
Digital Radiography: A Taxonomy

• Many dimensions along which to classify DR technologies
 • Direct vs. Indirect x-ray-to-signal conversion
 • Scanned (e.g., point, line) vs. Full-field
 • Beam geometry/Detector geometry
 • Detector type/material
 • Dynamic vs. Static
 • …
Digital Radiography: A Taxonomy
(x-ray interaction/detector*, signal extraction)

* Other detectors (e.g., pressurized gas, Si/metal strips) have also been used
Historical Context

Full-field (incl. x-ray) imaging with PSL intermediates (1842 - 1936)

R&D on SP scanning systems

Installed Base: 1
Price: $1,200,000
Size: ~ 10 m²
Speed: 40 plates/hr

Full-field night-vision "cameras" (IR/heat stim. SP)

Installed Base: ~20,000+
Price: ~ 10x lower
Size: ~ 10x smaller
Speed: ~ 2-4x faster

"Commercial Era"

CR: the most widespread form of DR!
Learning Objectives

• Describe the form and function of today’s computed radiography (CR) systems
• Identify the main factors that influence the image quality of CR systems
• Compare modern CR systems to other acquisition technologies
• Describe the latest and future developments in CR
Computed Radiography Technologies

- Basics
- System Design
 - Screens
 - Scanners
- Imaging Performance
 - Input/Output Relationship
 - Spatial Resolution
 - Noise
- New CR Developments
Basics
CR Characteristics

- Detector is SP screen (PSL screen, Imaging Plate, IP, ...)
- Screen can absorb, and store (partially) as a latent image, incoming high-energy electromagnetic radiation
- Exposure to low-energy stimulating radiation (λ_s) causes screen to emit the previously stored energy at a (shorter) wavelength (λ_e) in the visible – λ_s, λ_e must be sufficiently different, or no CR possible
Basics:
CR: Digital Alternative to Screen/Film

- BOTH systems
 - use phosphor screens as x-ray absorbers
 - use screens with similar structures (small phosphor particles dispersed in a binder)
 - emit light promptly on x-ray exposure (x-ray luminescence)
 - use screens that can be exposed thousands of times

- ONLY storage phosphors
 - can retain a portion of the absorbed x-ray energy (as a latent image of trapped electrons, e⁻)
 - can be read out at a later time, (destructively, i.e., latent image is erased as it is read)
Basics:
CR vs. Screen/Film - Advantages of CR

- Extended Exposure Latitude (10000:1 vs. ~40:1)
 - High exposure flexibility with 1 detector (retakes )
- Reusable Detector
 - Reduction in consumables (film, chemistry) costs (but, full impact only with softcopy interpretation)
- Compatibility/Scalability/Workflow/Productivity
 - No major changes to equipment/rooms/technique
 - Flexible reader placement (centralized and/or distributed architectures)
- Digital Data
 - Gateway for projection radiography into PACS
Computed Radiography Technologies

- Basics
- System Design
 - Screens
 - Scanners
 \} A System!
- Imaging Performance
 - Input/Output Relationship
 - Spatial Resolution
 - Noise
- New CR Developments
Design: Storage Phosphor Screens

- Support (flexible, rigid) coated with tiny (3-10 µm) SP particles dispersed in binder
 - Screen is turbid (white)
- Many materials tested, only a few successful
 - SrS:Ce, Sm
 - RbBr:Tl
 - BaFX: Eu\(^{2+}\) (where X=Br, I)
 - CsBr: Eu\(^{2+}\) (new)
- SP mechanisms/processes at micro (quantum) level still subject of active research!
Design: Storage Phosphor Screens

- Manufacturer-specific layers to optimize mechanical, optical, electrical performance, e.g.,
 - Wear, handling layer
 - Electrostatic discharge layer
 - Optical coupling layer
 - reflective backing
 - direct more emitted light to surface/photodetector
 - absorbing backing, dyes, filters
 - reduce spread/transmission of stimulating light (sharpness)
 - X-ray backscatter control layer (lead)
Design: Three-step Imaging Cycle

Exposure (INTERACT)
(Create Latent Image)

Prompt Emission of Light (λ_e) \sim50%

Stored Signal (trapped e-)

Remnant Signal

Read Out (CONVERT Latent Image)

"Fresh" Screen

Erase (Reset/Reinitialize)
(Remove Residual Latent Image)
Design: The Flying-Spot CR Scanner

- **Components**
 - IP transport stage
 - Beam deflector
 - Laser + intensity control
 - Beam shaping/control
 - Collection optics
 - Optical filter
 - Photodetector
 - Analog electronics
 - A/D Converter
 - Image buffer
 - Control computer
 - (Erase station)

- **Mech.**
 - IP transport stage
 - Beam deflector

- **Opt.**
 - Laser + intensity control
 - Beam shaping/control
 - Collection optics
 - Optical filter
 - Photodetector
 - Analog electronics
 - A/D Converter
 - Image buffer
 - Control computer
 - (Erase station)

- **Comp.**
 - Analog Electronics (signal conditioning)
 - Analog-to Digital Conversion (Sampling+Quantization)
 - Control Computer
 - Image Buffer
Design: The Flying-Spot CR Scanner

Laser Source + Intensity Control

- Efficient, rapid, accurate read-out of latent image
 - Power: high-power light source = laser (gas, solid-state)
 compact, efficient, reliable, tens of mW over \(\sim 100 \text{ µm} \ Ø\)
 - Wavelength, \(\lambda_s\): choice depends on energy needed to stimulate latent image electrons out of traps (typically reddish), and emission spectral range (\(\lambda_e\), typically bluish)
 - Constancy: laser power must be constant during scan to avoid artifacts/noise (fluctuation tolerance as low as \(\sim 0.1\%\) - active control with feedback loops)
Design: The Flying-Spot CR Scanner

Beam Shaping Optics

- Problem: laser point source and beam deflector cause size, shape, and speed of beam at IP surface to change with beam angle (similar to flashlight beam moving along wall)
 - Signal output and resolution depend on beam position - BAD
- Special scanning optics keep beam size/shape/speed largely independent of beam position
Design: The Flying-Spot CR Scanner

Beam Deflector

- Scans beam in one direction across IP surface (transport stage handles orthogonal direction)
 - Desired scan speed/throughput determines deflector type
 - rotating drum (slow)
 - galvanometer/mirror (shown)
 - rotating mirrored polygon (fast)
 - Beam placement accuracy is critical to avoid artifacts (edge jitter, waviness)
 - error tolerance: fractions of the pixel dimension
Design: The Flying-Spot CR Scanner Transport Stage

- Moves IP at constant velocity in one direction (Beam deflector handles orthogonal direction)
 - Desired scan speed/throughput determines transport type
 - rotating drum
 - flat bed/table
 - Small velocity fluctuations can lead to artifacts (visible banding)
 - error tolerance: few tenths of 1%
Design: The Flying-Spot CR Scanner Light Collection Optics

- Problem: stimulated light within phosphor layer is emitted and scattered diffusely in all directions
- Collect/channel as much as emitted light as possible to photodetector (numerical aperture: distance between IP surface and collector)
 - Mirrors
 - Integrating cavities
 - Fiber optic bundles
 - Light pipes
Design: The Flying-Spot CR Scanner

Optical Filter

- Intensity of emitted light (λ_e) is $\sim10^8$ lower than that of stimulating light (λ_s)
- Optical design must find “needle in a haystack”
- Importance of wavelength difference between λ_e, λ_s
 - High-quality optical filter can pass emitted light (λ_e) spectrum to photodetector and block stimulating light (λ_s)

![Diagram showing the optical filter, light collection optics, and emission spectrum with HeNe gas laser and solid-state laser wavelengths](image)
Design: The Flying-Spot CR Scanner

Photodetector

- Weak signal: need high conversion efficiency (light photons \rightarrow electrons), high gain, low noise
 - Photomultiplier Tube
 - dynamic range \approx SP ($>10^3$)
 - Quant. Eff. @ $\lambda_e \approx 25\%$
 - Charge-Coupled Device
 - Efficiency $\approx 2x$ PMT (@ λ_e)
 - But, also sensitive @ λ_s
 (need low-noise electronics, better optical filter)
Design: The Flying-Spot CR Scanner
Analog Electronics

- Condition/amplify analog, time-varying electrical current from photodetector before A/D conversion
 - Scale/compress large dynamic range of photodetector output to reduce performance requirements, distortion, cost in electronic chain
 - linear (compress after A/D)
 - logarithmic compression
 - square-root compression
 - Remove higher frequencies (> Nyquist) that will cause digitization/aliasing artifacts (fast-scan)
Design: The Flying-Spot CR Scanner Analog-to-Digital Conversion

• Analog signal must be sampled (made discrete in space/time) and quantized (made discrete in value)
 • Sampling rate determines spatial resolution (e.g., making a 2000 x 2500 image in 20 s requires sampling rate of $5,000,000/20 = 250$ kpixels/s)
 • Quantizer resolution must be high enough to maintain small, clinically relevant signal differences over full exposure range
 • 12-16 bits/pixel for linear data
 • 8-12 bits/pixel for nonlinear data (e.g., log, sqrt)
Design: The Flying-Spot CR Scanner

Image Buffer

- Until/unless digital images can be transferred to a more permanent storage location (such as a long-term archive), they need to be buffered (stored) locally (e.g., local hard disk, workstation).
- Buffer capacity depends on local storage needs, image throughput, network load, remote storage availability, system redundancy concept, etc.
Design: The Flying-Spot CR Scanner Erasure

• Remnant signal on screen must be reduced to a level much lower than lowest expected signal from next exposure (otherwise, ghost images)
 • Can become issue in RT applications
• Different designs (screen/scanner-dependent):
 • High-power halogen/incandescent lamps
 • LEDs (recent development)
• Spectrum is important (screen-dependent)
Computed Radiography Technologies

- Basics
- System Design
 - Screens
 - Scanners
- Imaging Performance
 - Input/Output Relationship
 - Spatial Resolution
 - Noise
- New CR Developments
Imaging Performance: Input/Output (I/O) Relationship

- CR screen is linear detector over >4 decades in exposure (CR scanner may lower this: flare, photodetector response)
- Latitude ≠ Dose Reduction
 - CR is NOT inherently lower dose than S/F: modern CR needs comparable dose to get same image quality
 - However, need many S/F systems to cover the same exposure range covered by one IP and one CR scanner

![Graph showing X-ray Sensitometry - Screen/Film and CR](image)
Imaging Performance: Spatial Resolution

- Spread/scatter of light within phosphor layer is the primary cause of unsharpness
 - S/F: emitted light spread
 - CR: stimulating light spread
- Amount depends largely on layer thickness, d: resolutions of S/F, CR are comparable
- Other factors: dyes, absorbing or reflecting backing, x-ray absorption depth, penetration depth (light), reflect./transm. readout geometry

X-ray absorption and resolution are coupled
Imaging Performance: Spatial Resolution - Other Factors

• Afterglow (flying-spot speed limit)
 • Luminescence decay time - screen continues to emit light after beam has passed (material-dependent)
 • If beam "dwell time" on each pixel too short, light from previous pixels collected with that of current pixel (1-dimensional smear/blur)

• Laser power
 • High power: +signal, -sharpness
 • Low power: +sharpness, -signal

• Analog electronics (filter effects)

• Destructive read-out physics (complex!)
Imaging Performance: Noise

- Random variation of an output signal around the mean value predicted by its I/O Relationship

Exposure-related
- Quantum noise
- Equipment noise
- Incident x-ray quanta

Screen-related
- X-ray quanta absorbed
- X-ray quanta scattered
- e⁻ per x-ray quantum
- Latent image decay
- Phosphor layer structure
- Overcoat/backing layer structure
- Phosphor particle size distribution

Scanning-related
- Deflector/transport velocity
- Laser source/intensity control
- Spread/scatter of stimulating beam
- Light photons emitted in screen
- Light photons escaping screen
- Light photons collected
- e⁻ created in photodetector
- Analog electronics
- Sampling and quantization
Imaging Performance:
Detective Quantum Efficiency*

<table>
<thead>
<tr>
<th></th>
<th>Direct</th>
<th>Indirect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen/Film</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Photoconductor + TFT (gen. rad.)</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Needle scint. + TFT</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Needle IP-CR</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Powder scint. + TFT</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Powder scint. + CCD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powder IP-CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powder IP-CR (dual-sided)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ideal Detector

*Caution: mostly literature reports; not all measurements done according to IEC 62220-1
Computed Radiography Technologies

- Basics
- System Design
 - Screens
 - Scanners
- Imaging Performance
 - Input/Output Relationship
 - Spatial Resolution
 - Noise
- New CR Developments
New CR Developments: Dual-sided Read-out*

- Use transparent support
- Detect emitted light from both sides of screen
 - More signal in same time
 - Phosphor layer can be thicker (x-ray absorption ↑)
 - Reduce noise by combining front/back signals
 - Sharpness comes from front signal (relatively unchanged), so need frequency-weighted combination of front/back)
 - DQE improvement (at lower frequencies) relative to single-sided readout

New CR Developments: Needle Detectors*

- Some SP materials (e.g., RbBr:Tl, CsBr:Eu$^{2+}$) grow in needles (like CsI in image intensifiers and indirect flat-panel DR)
- Image quality better than powder IP
 - I/O Relationship ➔
 - No binder: higher x-ray absorption
 - Increase layer thickness without degrading resolution (decouple sharpness and absorption)
 - Better conversion efficiency and read-out depth (CsBr)
 - Spatial Resolution ➔
 - Needles act as light pipes to reduce spread/scatter
 - Noise ➔
 - More uniform layer structure

New CR Developments: Line Scanning*

- Discrete components of current, point-at-a-time CR scanners lead to
 - low packing density
 - limits to throughput
- New integrated, line-at-a-time scanners
 - reduce scanner size
 - increase system throughput

New CR Developments:
Other

- Energy Subtraction
 (multiple IPs in single cassette, x-ray filter)
 - More image processing than acquisition
 - Automated IP/filter handling, image registration
 - Qualitative (Diagnostic) and Quantitative (Bone Mineral Densitometry, Absorptiometry) Imaging

- CR for mammography
 - Special IPs, cassettes
 - High-resolution scanning modes
 - Custom image processing (incl. CAD)
New CR Developments: Other

• "Flat-Panel CR"
 • fixed (needle) detector + movable line scanner in integrated package

• Radiation Therapy
 • Special screens and scanner protocols
 • Simulation, localization, verification
 • Dosimetry
Learning Objectives Revisited

• Describe the form and function of today’s computed radiography (CR) systems
• Identify the main factors that influence the image quality of CR systems
• Compare modern CR systems to other acquisition technologies
• Describe the latest and future developments in CR
CR Acquisition Technologies

Summary

- CR technology is mature (but not outdated!):
 - 30+ years of intensive R&D
 - Multiple generations and manufacturers
 - Diagnostically accepted and still expanding (hundreds of man-years of diagnostic experience)

- Performance/image quality now exceeds that of S/F with greater placement flexibility (distributed/centralized)

- New CR developments have
 - Raised image quality and system throughput
 - Decreased size
 - Lowered cost

CR will remain a valuable DR technology in the future
Thank You for Your Attention!

e-mail: ralph.schaetzing@agfa.com