AbstractID: 6624 Title: Prediction of lung Radiation-Induced Pneumonitis using the support vector machine algorithm

Purpose: To build and test a Support Vector Machine (SVM) model to predict the occurrence of lung radiation-induced Grade 2+ pneumonitis. SVM is a sophisticated statistical technique that is capable of using complex hypersurfaces to separate the cases with and without pneumonitis.

Method and Materials: Two SVM models were built using data from 235 patients with lung cancer treated using radiotherapy (34 diagnosed with pneumonitis). One model ($\mathrm{SVM}_{\text {all }}$) selected input features from all dose-volume and non-dose factors. For comparison, the other model $\left(\mathrm{SVM}_{\text {dose }}\right)$ selected input features only from lung dose-volume factors. The models were built with in-house developed software that employed a unique strategy to sequentially add/remove/substitute features. The SVM models were tested using ten-fold cross-validation, wherein $1 / 10^{\text {th }}$ of the data were tested, in turn, using the model built with the remaining $9 / 10^{\text {th }}$ of the data.

Results: The input features selected to build SVM $_{\text {all }}$ were the lung generalized equivalent uniform dose (EUD) with exponents $a=1.2$, 1.3 , 1.4 , chemotherapy prior to radiotherapy (yes/no), tumor location (central/peripheral), gender, and histology (adenocarcinoma/other; small cell/other). The input features for $\mathrm{SVM}_{\text {dose }}$ were EUD $\mathrm{a}=1.1,1.3,1.4$, lung volume receiving $>48 \mathrm{~Gy}$ (V48), and V50. Both models selected EUD $\mathrm{a} \approx 1$ (EUD $\mathrm{a}=1$ is the mean lung dose, which frequently appears as a strong predictor of radiation pneumonitis in literature). The area under the cross-validated SVM ${ }_{\text {all }}$ Receiver Operating Characteristics curve was 0.76 (sensitivity/specificity $=74 \% / 75 \%$), compared to the corresponding $S^{2} M_{\text {dose }}$ area of 0.71 (sensitivity/specificity $=68 \% / 68 \%$). SVM ${ }_{\text {all }}$ was statistically superior ($\mathrm{p}=0.01$), indicating that non-dose features significantly contribute to separating patients with and without pneumonitis.

Conclusions: The SVM model constructed from dose and non-dose input factors is a valuable prospective tool for predicting the occurrence of radiation-induced lung pneumonitis.

