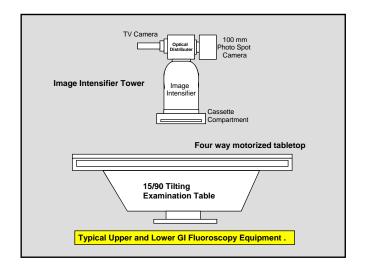
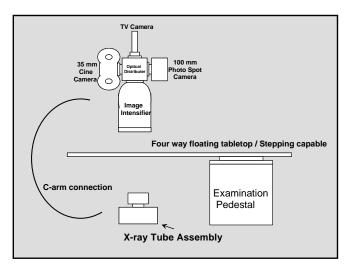


PART I.

Review of Basic Automatic Brightness Controlled Fluoroscopy Systems.

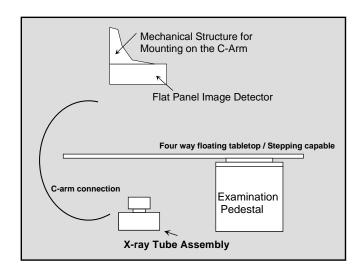
And

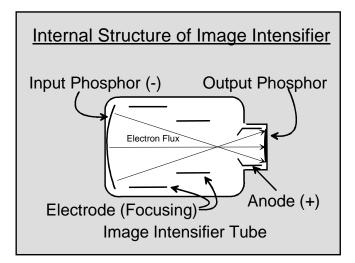

Some historical overview.

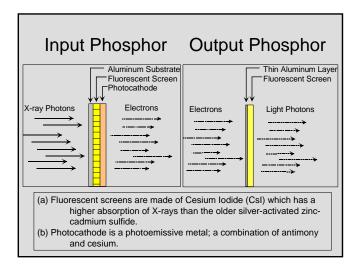

Review of Fluoroscopy Equipment

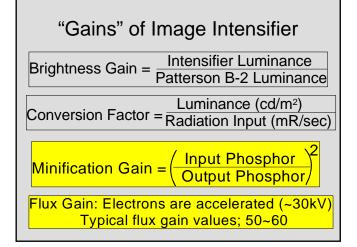
- 1) Conventional Fluoroscopy Unit
- 2) Special Procedures Fluoroscopy Unit
 - a) Extension of conventional fluoroscopy.
 - b) Pedestal Type examination table fluoroscopy and over-head hanger synchronized lateral plane.
- 3) Fluoroscopy Systems with Positioners for
 - a) Cardiac Catheterization.
 - b) Neuro Angiography.
 - c) Visceral Angiography.
 - d) Electrophysiology Laboratory.

The "Legacy" Fluoroscopy

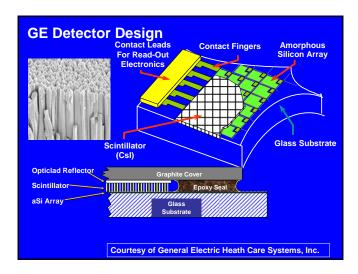

- 1) Compartment for full size cassettes,
- 2) Either Conventional or Pedestal type examination table,
- 3) Image Intensifier,
 - a) Input Phosphor, and Output Phosphor.
 - b) Image intensifier is an Electron Optical Device.
 - Optical Distributor mounted on I.I. to accommodate Cameras, i.e.;
 - Photospot (photofluorographic) Camera,
 - · Cine (cinematographic) Camera, and
 - Closed Circuit Television Camera

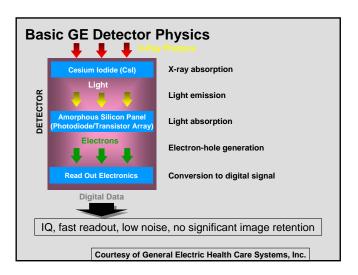


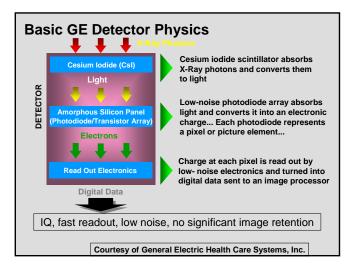



Up to this point may be considered "Legacy Fluoroscopy" Equipment.

- Irrespective of the geometrical configuration, the fluoroscopy is equipped with "Automatic Brightness Control" (ABC) circuit.
- The TV chain is equipped with "Automatic Gain Control" (AGC).
- The primary imaging parameter may be "tube potential", "tube current", or "pulse width" for pulsed fluoroscopy.

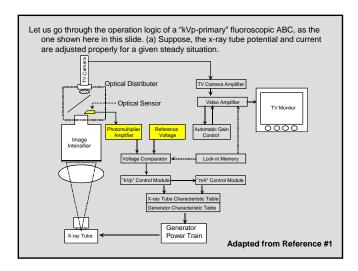






Total Brightness Gain of Image Intensified Fluorocopy System For a 9" mode image intensifier with 1" output phosphor, the minification gain is (9/1)X(9/1)=81. The Flux gain is approximately ~50. Therefore, the total brightness gain is = 81 X 50 = 4050.

 The flat panel image detector technology as a whole (at a minimum) will have to; (1) have a similar electronic gain in order to maintain the input sensitivity enjoyed by the image intensifier television chain, (2) hence, a comparable input sensitivity to maintain the same patient exposure.



Automatic Brightness Control

- There are there primary imaging parameters that may be employed to drive the ABC circuit, namely;
 - 1) The tube potential "kVp",
 - 2) The tube current "mA", or
 - The exposure time, more accurately; "pulse width" for a pulsed fluoroscopy system.
- System (3), "Exposure Time system" is similar to the radiographic automatic exposure control (AEC), it "phototimes" each fluorscopic pulse.
- Usually, the tube potential and tube current are manually selected.
- This method of brightness control has long been retired, and will not be discussed further.

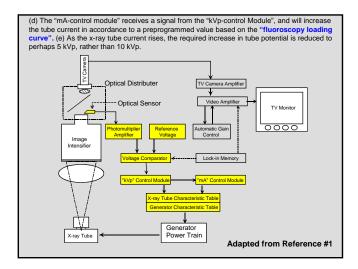
kVp-primary ABC Circuit

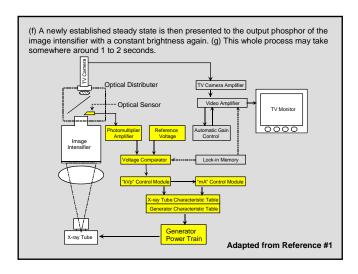
(b) Assume that a patient has swallowed a large amount of barium meal. Therefore, a sudden increase in x-ray absorption had occurred. (c) The voltage comparator detects that a decrease in voltage from the photomultiplier amplifier. A signal is sent to the "kVp-control Module" to increase the tube potential by 10 kVp. [If the current remained the same.]

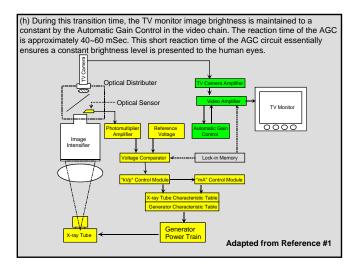
Optical Distributer

Optical Sensor

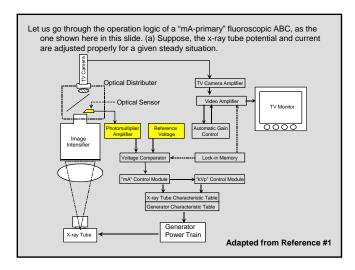
Voltage Comparator

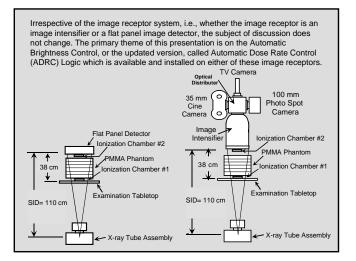

Voltage Comparator

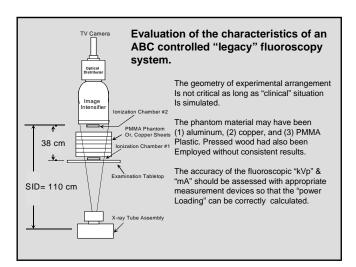

Voltage Comparator

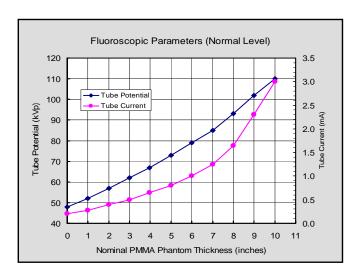

TV Monitor

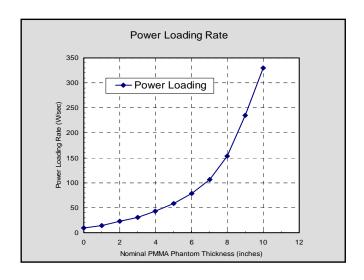
TV Monitor

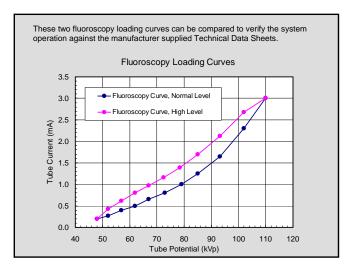

Adapted from Reference #1

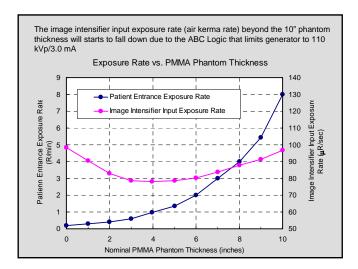


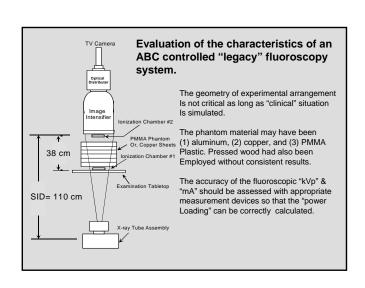


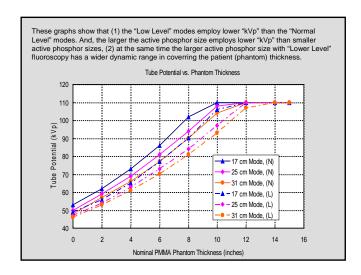

mA-primary ABC Circuit

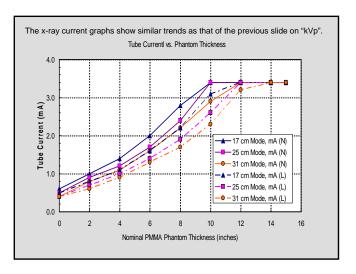


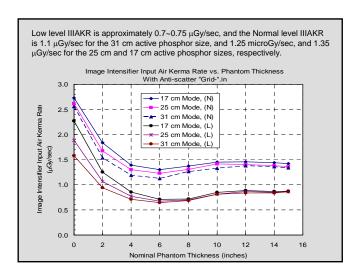

- A few slides ago, it was mentioned that the "mA-control module" receives a signal from the "kVp-control Module", and will increase the tube current in accordance to a preprogrammed value based on the "fluoroscopy loading curve".
- The fluoroscopy loading curve is at the heart of the ABC, and verification and/or evaluation of fluoroscopy ABC logic can be obtained through a simple experimental setup.

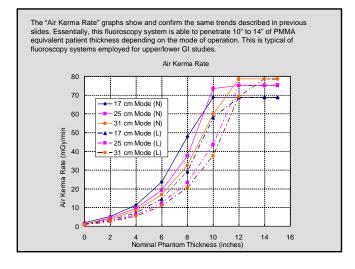


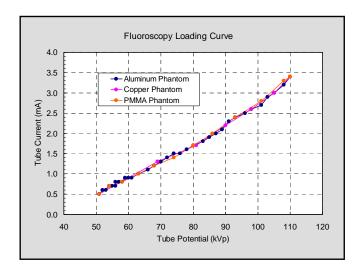


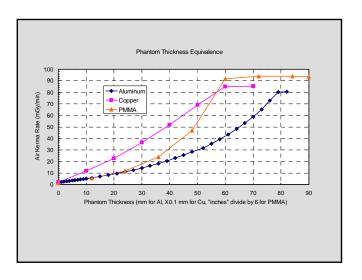


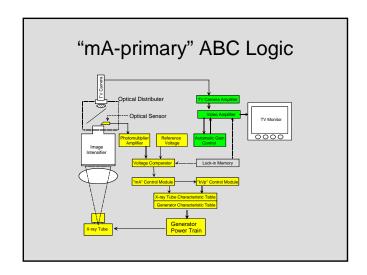

PART II. Evaluation of ABC Logic

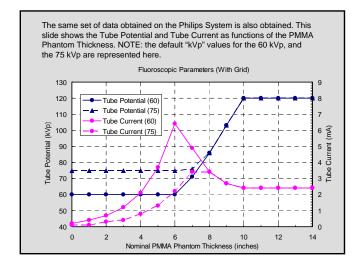

- Let us conduct the same test on a typical "Upper/Lower GI" Study fluoroscopy system (Philips Eleva System).
- With Phantom Materials of; Copper and Aluminum.
- Compare the data to find out what thickness aluminum is equivalent to what thickness of copper.

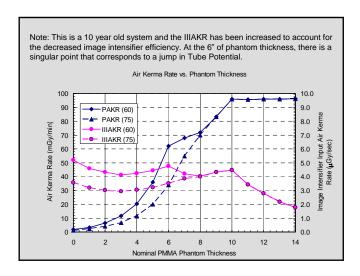

- The Philips Eleva System evaluated in this study was equipped with the following features;
 - 1) Image Intensifier Format: Tri mode I.I.
 - a) 17/25/31 cm active phosphor sizes. (3)
 - 2) Fluoroscopy Operation:
 - a) Continuous Fluoroscopy Mode. (2)
 - b) Pulsed Fluoroscopy Mode. (2)
 - c) Low Dose Level & High Dose Level Modes. (2)
 - 3) Anti-scatter Grid may be removed.(2)
- The permutation of available modes under fluoroscopic operation configuration ~ 48
- Not all available modes of combination were evaluated.

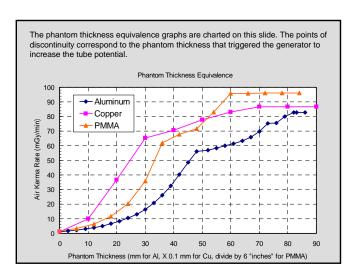


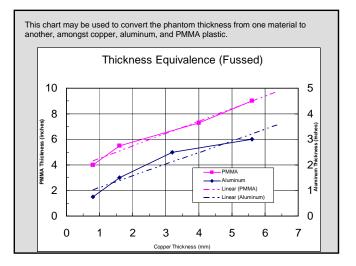









Thick	kness Equ	iivalence (Ph	nilips Eleva S	ystem)
Air Kerma Rate (mGy/min)	Copper (mm)	Aluminum (mm)	Aluminum (inches)	PMMA (inches)
10	8.0	19	3/4	3.67
				[3-3/4]
20	1.6	38	1-1/2	5-1/2
40	3.2	58	2-1/4	7.3
				[7-1/2]
80	5.6	76	3	9.3
				[9-1/2]


- A GE Advantx fluoroscopy system is equipped with the "mA-primary" ABC Logic.
- The tube potential may be pre-selected, and defaulted to 75 kVp for fluoroscopy operation.
 This is the minimum "kVp" unless the "kVp" is manually selected at a lower value.
- The tube potential is increased by a preset value (5, or 10 kVp) when the Patient Air Kerma Rate approaches the regulatory limitation.
- The system is calibrated to work at a given "kVp" while the "mA" is varied in accordance to the attenuation the optical sensor "sees".

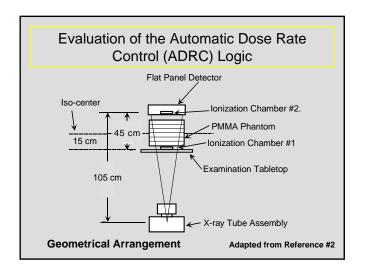
	Philip	Eleva	GE A	dvantx	Philip Eleva	GE Advantx
Cu (mm)	Al (mm)	AI (inches)	Al (mm)	AI (inches)	PMMA	(inches)
0.8	19	0.75	22	0.87	3.65	2.5
1.6	38	1.5	36	1.42	5.5	4.3
3.2	58	2.25	68	2.7	7.3	7.3
5.6	76	3	82	3.2	9.3	9

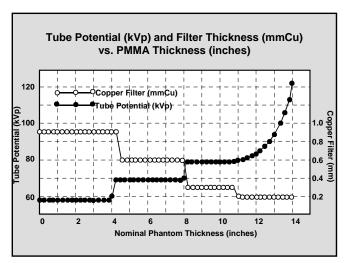
PART III. The ADRC; new generation of ABC

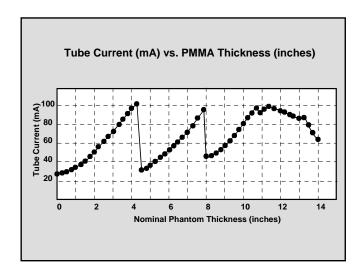
- Application of filters using aluminum, copper and high atomic number elements for patient exposure reduction had been studied for use in radiographic examinations.
- On the other hand, the introduction of copper filters for spectral shaping during fluoroscopic imaging procedures had been available for the past decade,
- However, extensive application of spectral shaping filters started in its earnest as the interventional angiography procedures become widely practiced in the US in the early 1990s.
- Use of spectral shaping filters contributed to minimize the patient (skin entrance exposure) air kerma dramatically while the image quality is optimized and maintained.

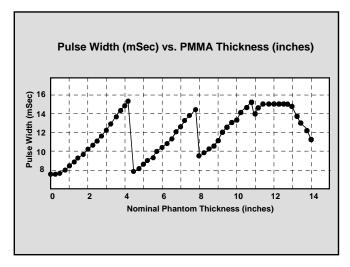
Excerpt from Reference #2

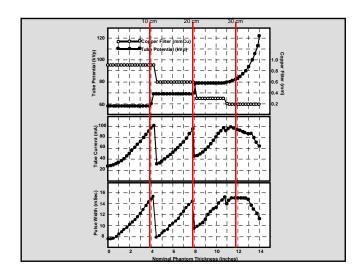
New Generation of Cardiovascular Fluoroscopy Systems are equipped with;

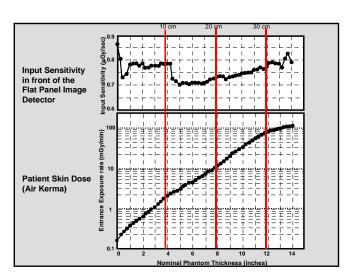

- 1) High Frequency Inverter Type Generator
 - a) Precise switching time (1 msec)
 - b) Better Pulse Shape (less over/under shoot)
- 2) Spectral Shaping Filters
 - a) 0.2 ~ 0.9 mm copper (beam hardening)
 - b) On a rotating wheel in collimator assembly (interchangeable filters during fluoroscopy)
- 3) High Heat Capacity X-ray Tube
 - a) High Anode Heat Capacity (2 MHU)
 - b) High X-ray Tube Housing Heat Capacity (3 MHU)
 - c) To counter attenuation by spectral shaping filter

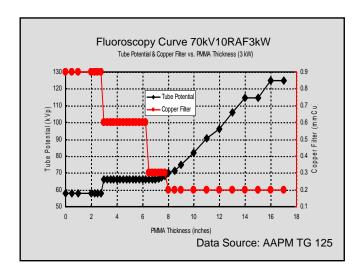

Automatic Dose Rate Control (ADRC) Logic

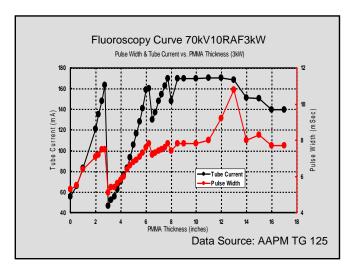

- (a) A sophisticated software programming to control the copper filter thickness in response to x-ray attenuation.
- (b) The ADRC is designed to control various imaging parameters including; (1) focal spot size, (2) kVp, (3) mA, (4) pulse width, etc. during fluoroscopy.
- (c) The heavy copper filter preferentially removed low energy photons and the mean x-ray beam energy is, thus, increased.
- (d) For the same applied tube potential this would require a higher "tube current" to produce an acceptable image quality. --- Hence, a "high power" x-ray tube is required.

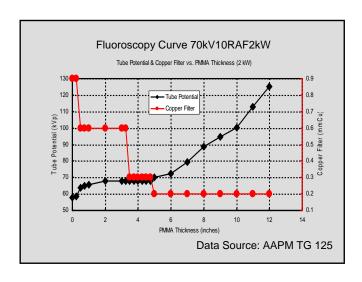

Automatic Dose Rate Control (ADRC) Logic

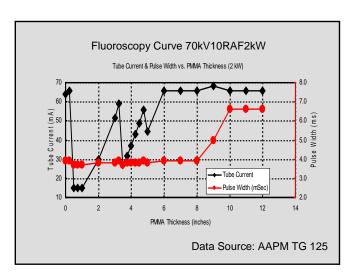

- (a) The fluoroscopy system employed is a Siemens Biplane angiography system AXIOM Artis dBA.
- (b) Operated under 22 cm flat panel image receptor mode. [It is a 48 cm flat panel.]
- (c) Pulsed fluoroscopy rate @ 15 pulses/sec.
- (d) Fluoroscopy curve name: 80kV10RAF2kW
- (e) Equipped with spectral shaping filters of; 0.2, 03, 0.6, and 0.9 mm of copper.
- (f) The small focal spot (0.6 mm) is the default.
- (g) SID = 105 cm, Source-to-chamber #1 = 60 cm.

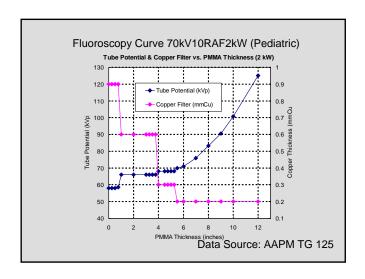


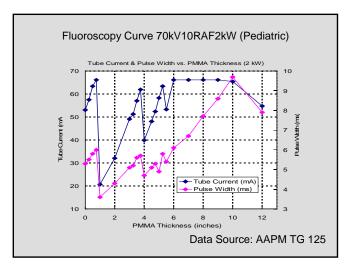


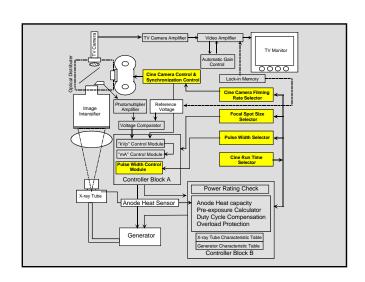





Why is it possible to have a "Better Image Quality" & "Lower Patient Dose" at the same time?

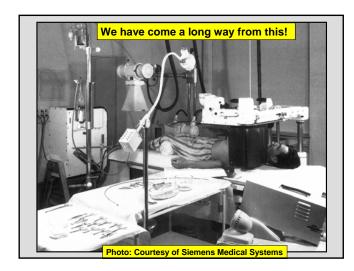

- Image quality is "better" because of consistently lower tube potential is employed---higher image contrast!
- Radiation dose to the patients, especially, small and average size patient, is significantly reduced due to the use of spectral shaping filters --- considerably amount of low energy portion of spectrum is removed before hitting the patient.
- There are many fluoroscopy curves designed by the manufacturers tailored to fit specific types of examination.
 - Some 256 fluoroscopy curves are available.
 - Cardiac vs. Neuro vs. Visceral angiography
 - For adults ? Or for pediatric patients?
- Needs to verify the preprogrammed fluoroscopy curves for the intended use of the system.
- Not only the acceptance testing of the hardware is necessary, but also evaluation of the software becomes increasingly important.





What's beyond the ADRC Logic?

- The fluoroscopy is employed to find the passage and manipulate the catheter and/or the guide wire to the point of interests.
- The mission of the ADRC for fluoroscopy may be accomplished but is just the starting point for the acquisition of diagnostic information.
- In other words, the "acquisition mode" of the examination, as opposed to the "fluoroscopic mode" lies ahead.



23/25 cm Image Intens	sifier Input Phosphor (Active) Size
	Current Practice	Used To Be
Low Level Fluoroscopy	25 μR/sec	50 μR/sec
Normal Level Fluoroscopy	50 μR/sec	75-100 μR/sec
High Level Fluoroscopy	75 μR/sec	N/A
100 mm Photospot Camera	50-100 μR/frame	100-200 μR/frame
Digital Photofluorography	25-100 μR/frame	100 μR/frame
Digital Subtraction Angiography	100-500 μR/frame	500-1000 μR/fram
35 mm Cine Camera	10-20 μR/frame	15-30 μR/frame
Digital Cine Photofluorography	7-12 μR/frame	N/A

Due primarily to the better image intensifier, television chain.

Data Date: 2001

23/25 cm Image Int	ensifier, Patient Expos	ure Rate
	Current Practice	Used To Be
Low Level Fluoroscopy	> 1 R/min	3 R/min
Normal Level Fluoroscopy	3 R/min	6 R/min
High Level Fluoroscopy	5 R/min	N/A
100 mm Photospot Camera	100 mR/frame	200 mR/frame
Digital Photofluorography	75~100 mR/frame	200 mR/frame
Digital Subtraction Angiography	100~300 mR/frame	500 mR/frame
35 mm Cine Camera	30~80 R/min	70~160 R/min
Digital Cine Photofluorography	20~60 R/min	N/A

References & Other Reading Material

- PP Lin, "Acceptance testing of automatic exposure control systems and automatic brightness stabilized fluoroscopic equipment", in <u>Quality Assurance in</u> <u>Diagnostic Radiology, AAPM Monograph No. 4</u>, New York: Am. Inst. Phys., pp 10-27 (1980)
- 2. PP Lin, "The operation logic of automatic dose control of fluoroscopy systems in conjunction with spectral shaping filters", Med. Phys. Vol 34 no 8, pp 3169-3172 (2007)
- 3. PP Lin, "Cine and Photospot Cameras", in <u>Encyclopedia of Medical Devices and Instrumentation,</u> John G. Webster Editor, John Wiley & Son, Publisher, 1st Edition, Vol. 2, pp 681-693 (1988)
- 4. AAPM TG 125 Home Page.

E-mail Address: plin@bidmc.harvard.edu