Ultrasound QC Workshop

Sandra Larson, PhD
University of Michigan Medical Center, Ann Arbor, MI

Doug Pfeiffer, MS, DABR
Boulder Community Hospital, Boulder, CO

2007 AAPM Annual Meeting, Minneapolis, MN

Ultrasound Accreditation – ACR QC Requirements

• A QC program must be in place for each ultrasound unit.
• Must have program documentation describing the goals and responsibilities of the QC program.
• QC program must be directed by a medical physicist or the supervising radiologist/physician.
• QC testing must be done at least semiannually. Must keep documentation of QC results and corrective action on site.

Ultrasound Accreditation – Required QC Tests

• Assurance of electrical and mechanical safety.
• Photography and other hard copy recording.
• System sensitivity and/or penetration capability.
• Image uniformity.

Ultrasound Accreditation – Additional Recommendations

• Low-contrast object detectability.
• Accuracy of vertical and horizontal distance measurements (acceptance).
• For each unit, perform tests with 2 commonly used transducers of different scan formats.
• Use of a phantom is optional at this time.
ACR Recommended QC for Breast Ultrasound

- Maximum depth of visualization and hardcopy recording with a tissue-mimicking phantom.
- Image uniformity.
- Electrical-mechanical cleanliness (safety).
- Vertical and horizontal distance accuracy.
- Anechoic void perception.
- Ring down.
- Lateral resolution.
- Quality control checklist.

References – QC Testing

References – QC Testing

Where do I begin?

- What tests do you intend to perform?
- Can the tests be performed with the available equipment?
- Who will perform the tests?
- Talk to the sonographers.
Talk to the Sonographers

- Find out the most commonly used transducers and system settings.
- Find out what the user expects you to do or not to do with their systems. There are some settings the user may not want you to adjust.
- Make a list of systems and transducers with serial numbers. Most systems are on wheels and have a habit of moving around even when they're not supposed to be moved. Transducers tend to migrate as well.

Talk to the Sonographers

- Look for brightness and contrast controls on the exam monitor. Do the sonographers adjust them?
- Learn how to print an image. Does the site already have a QC program in place for the processor or laser printer?
- Find out who is responsible for calling service on these systems and make sure they know you. You should be informed if a transducer is replaced.

The QC Tests

- Check transducers carefully for cracks and delamination. Note any obvious damage to the cords and connectors of the transducers.
- Check for dusty air filters.
- Make sure the image monitors are clean.
- Check for frayed electric cables or other physical damage to the system.
- Check the working condition of the wheels and wheel locks.

Electrical and Mechanical Safety
Photography and Hardcopy Recording

- On the exam monitor, compare the test pattern or the grey bar in the patient image to that at acceptance.
- Compare the hard copy image to the exam monitor image.
- QC must be performed for the film processor or laser printer and for soft copy display monitors.

Sensitivity / Depth of Penetration

- Set the maximum transmit power, place the transmit focus at the deepest depth, and set an appropriate TGC for imaging in deep regions.
- Measure the depth at which echo signals in a tissue mimicking phantom disappear into the noise.

Uniformity

- Adjust settings to obtain as uniform an image as possible.
- Look for vertical or radially oriented lines or streaks.
- Look for horizontal bands and brightness transitions between focal zones.
Low Contrast Detectability

- An example of a phantom for low contrast detectability.
- These objects are an anechoic void, -9 dB, -6 dB, -3 dB. Diameters are 2.4 mm, 4 mm, 6.4 mm.

Vertical & Horizontal Distance Accuracy

- Vertical Criterion: 1.5% of the actual distance or 2 mm, whichever is greater
- Horizontal Criterion: 3% of the actual distance or 3 mm, whichever is greater
- Phantom also has anechoic voids, spatial resolution and ring down (dead zone) targets

Other Considerations

- The ACR recommends tests with only two transducers per system.
- Should you really ignore the other transducers? Is a visual examination sufficient?
- Would a quick uniformity image be sufficient? Would a testing device that checks for individual transducer element response be sufficient?

Quantitative QC Tests

- Most ultrasound phantom tests are extremely subjective in nature. Lack of reproducibility in the results can be a problem.
- Several groups are working on quantitative analyses of QC results. But are these methods quick to perform and easy to implement? Are these tests sufficient?
- My personal answer: Not Yet.
Doppler Testing

- **The ACR currently does not have any recommendations for Doppler testing.** Doppler testing requires physical measurements of hemodynamic values, not a subjective judgment of image quality.
- **Defective transducers have a large affect on accurate flow detection.**

Doppler Tests

- Doppler signal sensitivity
- Doppler angle accuracy
- Color display and gray-scale image congruency
- Range-gate accuracy
- Flow readout accuracy

References – Ultrasound Accreditation

- Program requirements can be found at http://www.acr.org/accreditation/Ultrasound/ultrasound_reqs.aspx
- Program testing instructions can be found at http://www.acr.org/accreditation/Ultrasound/qc_forms/clinical_testing_instructions.aspx

References – Breast Ultrasound Accreditation

- Program requirements can be found at http://www.acr.org/accreditation/breast/breast_ultrasound_reqs.aspx
References – Ultrasound Phantoms

• http://www.cirsinc.com/main_us.html
• https://www.gammex.com/catalog/default.php?cPath=21_22
• http://www.atslabs.com/
• http://www.kyotokagaku.com/products_ultr_qap.html
• http://www.fantom.suite.dk/

References – Quantitative QC

• See The Nickel and First Call Testing at http://www.4sonora.com/.
• See UltraIQ at http://www.cablion.net/EN/Producten/Radiologie/UltraIQ.htm.