AbstractID: 9128 Title: A new self-consistent inverse deformation field generator and its applications

Purpose: To provide a tool to map image intensity, dose, and contours back-and-forth consistently between two images. Method and Materials: A new concept, a selfconsistent Inverse Displacement Vector Field (IDVF) is defined and an algorithm to generate the IDVF is implemented. A deformable image registration (DIR) algorithm was chosen to generate a DVF_{A-B} between reference image A and study image B. The same DIR algorithm is also used to generate DVF_{B-A}and our IDVF generator is used to create IDVF_{B-A}, which is consistent with DVF_{A-B}. To test whether DVF_{B-A} or IDVF_{B-A} be tter maps information from A-B ba ck to A for a lung 4D CT dataset, an arbitrary set of points S_A is chosen and are warped to S_B by using DVF_{A-B}. DVF_{B-A} is used to warp S_B back to A to get S_A^D . Similarly, IDVF_{B-A}i s used to warp S_B back to A to get S_A^I . For each point in S_A^D (or S_A^I), we know its original point in S_A . Hence, one can calculate the Euclidean distance between each point in S_A^D (or S_A^I) and its original point in S_A to quantify the error in the back-and-forth image warping. Similarly, dose on A is warped to B and back to A. **Results:** The IDVF warped points from study back to reference with maximum error about 10 times smaller than using DVF_{B-A} . Similarly, the $IDVF_{B-A}$ dose maximum warping error is about 2 times smaller than using DVF_{B-A}. Conclusion: This work shows that it is possible to generate self-consistent IDVF with small mapping error. This IDVF is useful to warp contours and dose for IGART. (Work supported by NIH P01CA116602).