AbstractID: 9487 Title: The Role of Voxel-Based T10 Calculations in Determining Correct Pharmacokinetic Parameters for Head and Neck Tumors
Purpose: To determine the optimal flip angle combination (oFAc) that generates voxel-based T_{10} values, the median T_{10} for primary and nodes ($\mathrm{T}_{10}{ }^{\mathrm{p}, \mathrm{n}}$), and its implications on vascular permeability (PERM) and extracellular volume fraction (EVF) in HN patients treated with targeted therapy and chemoradiation.
Method and Materials: To generate voxel-based T_{10}, a gradient echo sequence was used on a 1.5 T scanner with $\mathrm{TR}=6.44 \mathrm{msec}$ and FA of 10 , 15 , 20 , 30 , 45°. For different FA combinations, the voxel-based values were calculated using CAD Sciences ${ }^{\circledR}$ (White Plains, NY). The average of the median T_{10} in muscle and fat ($\mathrm{T}_{10}{ }^{\mathrm{m}, \mathrm{f}}$) regions of interest (ROI) in 3 patients was calculated. Criteria for oFAc included minimal variation from published muscle and fat values at 1.5 T , and minimum number of FA used for fitting. To determine $T_{10}{ }^{\mathrm{p}, \mathrm{n}}$, values from ROIs delineated by 2 users (A,B) were calculated. For 3 patients, the PERM and EVF from primary and nodes ROIs were calculated using T_{10} maps and $\mathrm{T}_{10}{ }^{\mathrm{p}, \mathrm{n}}$.
Results: The $10-45^{\circ}$ FAc was chosen for subsequent T_{10} mapping as it had the greatest percentage of fitted pixels (90% for muscle, 100% for fat, $\% 83$ for primary, 72% for nodes) and a $\mathrm{T}_{10}{ }^{\mathrm{m}}=0.923 \mathrm{sec}$, and $\mathrm{T}_{10}{ }^{\mathrm{f}}=0.379 \mathrm{sec}$, compared to reported 0.870 and 0.260 sec for muscle and fat, respectively. From14 patients, $\mathrm{T}_{10}{ }^{\mathrm{pA}}=0.804$, $\mathrm{T}_{10}{ }^{\mathrm{nA}}=0.760, \mathrm{~T}_{10}{ }^{\mathrm{pB}}=0.849, \mathrm{~T}_{10}{ }^{\mathrm{nB}}=0.810 \mathrm{sec}$. The difference between the PERM and EVF calculated with voxel-based T_{10} versus $\mathrm{T}_{10}{ }^{\mathrm{p}, \mathrm{n}}$ ranged from $6-81 \%$ for PERM, and $2.5-23 \%$ for EVF.
Conclusion. The $10-45^{\circ}$ FAc is fast and accurately describes the known T_{10} of normal tissue. Voxel-based T_{10} calculations are essential for correct Tofts-based PA in heterogeneous tumors. For HN, primary and nodes $T_{10}{ }^{\mathrm{p}, \mathrm{n}}=0.8 \mathrm{sec}$ is a good estimate for T_{10} in the absence of T_{10} mapping capability.

