Quantitation in Nuclear Medicine

Michael King, Ph.D.

Department of Radiology, University of Massachusetts Medical School, Worcester, MA

e-mail: Michael.King@umassmed.edu

Outline of Talk

- Examples of Quantitation in Nuclear Medicine
- Factors That Impact Absolute Quantitation of Activity
- Correction for Attenuation
- Correction for Scatter
- Correction for Spatial Resolution
- Partial volume Effect
- Summary

Examples of Quantitation in Nuclear Medicine?

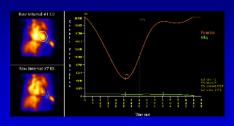
- Physiological Function / Dynamic Behavior
 - Thyroid Uptake
 - Kidney Function
 - Quantification of Blood Flow
 - Compartmental Modeling
 - LV Ejection Fraction
- Database Relative Localization
 - Relative Cardiac Perfusion
 - Brain Metabolism

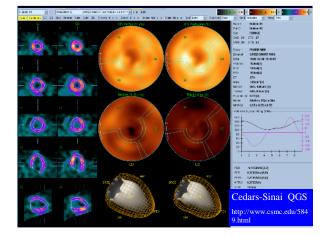
- · Absolute Quantification of Activity

 - PET: SUV diagnosis and monitoring therapySPECT: Dosimeter for radionuclide based therapy

Examples of Quantitation in Nuclear Medicine?

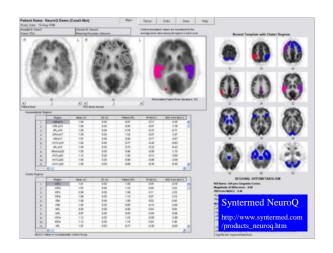
- · Physiological Function / Dynamic Behavior
 - Thyroid Uptake
 - Kidney Function
 - Quantification of Blood Flow
 - Compartmental Modeling
 - LV Ejection Fraction
- Database Relative Localization


 - Relative Cardiac Perfusion
- Brain Metabolism
- Absolute Quantification of Activity
 - PET: SUV diagnosis and monitoring therapy
 - SPECT: Dosimeter for radionuclide based therapy


Examples of Quantitation in Nuclear Medicine?

- Physiological Function / Dynamic Behavior
 - Thyroid Uptake
 - Kidney Function
 - Quantification of Blood Flow
 - Compartmental Modeling
 - LV Ejection Fraction
- Database Relative Localization
 - Relative Cardiac Perfusion
 - Brain Metabolism
- Absolute Quantification of Activity
 - PET: SUV diagnosis and monitoring therapy
 - SPECT: Dosimeter for radionuclide based therapy

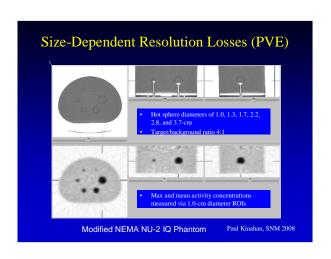
Cardiac LV Ejection Fraction

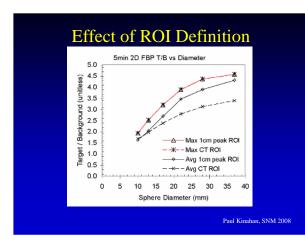

- $EF = [(Vol LV_{ED}) (Vol LV_{ES})] / (Vol LV_{ED})$
- Sensitive parameter for ventricular performance
- Started with planar Gated-Blood-Pool Studies where it is estimated based on counts within ROI with Bkg correction.

Examples of Quantitation in Nuclear Medicine?

- Physiological Function / Dynamic Behavior
 - Thyroid Uptake
 - Kidney Function
 - Quantification of Blood Flow
 - Compartmental Modeling
 - LV Ejection Fraction
- Database Relative Localization
 - Relative Cardiac Perfusion
 - Brain Metabolism
- Absolute Quantification of Activity
 - PET: SUV diagnosis and monitoring therapy
 - SPECT: Dosimeter for radionuclide based therapy

Examples of Quantitation in Nuclear Medicine?


- Physiological Function / Dynamic Behavior
 - Thyroid Uptake
 - Kidney Function
 - Quantification of Blood Flow
 - Compartmental Modeling
 - LV Ejection Fraction
- Database Relative Localization
 - Relative Cardiac Perfusion
 - Brain Metabolism
- Absolute Quantification of Activity
 - PET: SUV diagnosis and monitoring therapy
 - SPECT: Dosimeter for radionuclide based therapy


<u>Determination of SUV in PET</u> • Standardized Uptake Value (SUV)

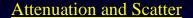
 $SUV = \frac{\text{(decay corrected activity/ml of lesion)}}{\text{(injected activity / patient weight in g)}}$

- Patient Compliance
 - fasting, blood glucose levels
- Scan Conditions
 - time post-injection, patient motion, CT AC
- System Performance
 - calibration, QA, performance characteristics of the system, reconstruction algorithm, ROI type

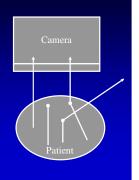
Adapted from Osama Mawlawi, "Factors affecting accurate quantification in PET/CT", AAPM Summer School, 2008

Need for Quantification of Absolute Activity For Therapy Applications in SPECT

- Pretreatment tracer imaging to predict the absorbed dose during therapy (treatment planning)
- Post-therapy imaging
 - Monitoring radiation dose during therapy
 - To establish correlation between dose-response/toxicity
- Dr. Sgouros will discuss Radionuclide Therapy and Dosimetry – I will focus on factors impacting quantification of activity.

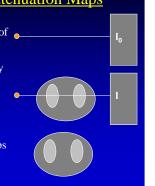

Adapted from Yuni Dewaraja, SNM 2008

Absolute Quantitation of Activity in SPECT (and PET)

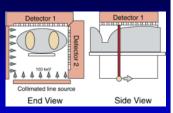

- $A(Bq) = R(cps) / [n (photons/dis) \times D(c/photon)]$
- A = Tissue Activity in dps or Bequerel (Bq)
- R = Count Rate in cps from structure of interest as determined by imaging
- n = Fractional Emission Rate of photons of given energy
- D = Detection Efficiency of imaging system for given energy photons
- Problem is correcting for **Detection Efficiency** for structure of interest **inside** the patient.

SPECT Detection Efficiency Depends On

- Imaging System Dependent
 - Collimator efficiency
 - Crystal detection efficiency and energy window fraction
 - System spatial resolution and septal penetration
 - Crosstalk between energy windows, backscatter, lead x-rays
 - Counting rate losses
- Patient Dependent
 - Photon attenuation
 - Detection of scattered photons
 - Kinetics of radiopharmaceutical during imaging
 - Patient motion
- Processing Dependent
 - Reconstruction algorithm and parameters
 - ROI definition
- Research related to improving quantification with SPECT



- Emitted photons can be transmitted, absorbed, or scattered.
- Attenuation (absorption and scattering) <u>removes</u> counts.
 - $I = I_0 \exp(-\mu x)$ Good Geometry
- Count loss depends on <u>μ</u> of material and <u>x</u> of source.
- Scattering <u>adds</u> back counts. $I = B(\mu x) I_0 \exp(-\mu x)$ Broad Beam B = Buildup Factor = (P + S) / P
- Need to account for <u>BOTH</u> for correct quantitation

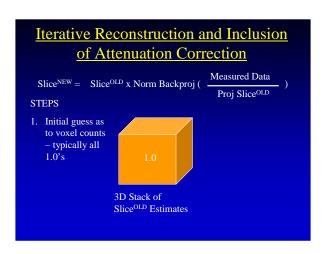

SPECT Correction for Attenuation: Estimation of Attenuation Maps

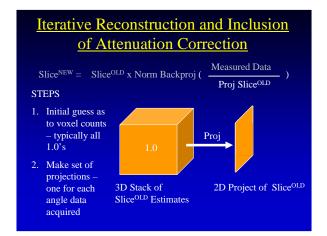
- To correct for attenuation need a patient specific map of how μ varies within slices.
- Acquire "Blank Scan" to obtain unattenuated intensity (I₀).
- Measure attenuation profile when patient is present (I).
- Divide and transform $\mu = [\ln (I_0/I)]/x$
- Reconstruct attenuation maps with FBP or iterative reconstruction method.

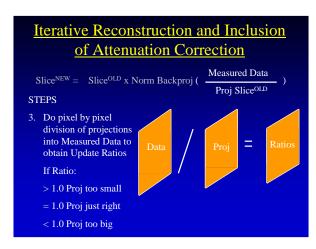
Estimation of Attenuation Map: Scanning Line Source

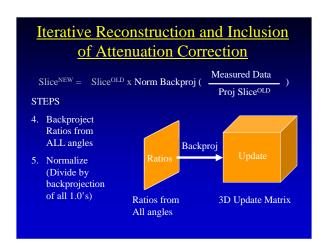
- Tan, JNM 34:1752-60, 1993
- Electronic windowing of imaging reduces cross-talk between emission and transmission windows
- Gd-153 line source
- Photon energies 97 and 103 keV
- 242 day half-life
- Method used at one point by 3 major manufacturers

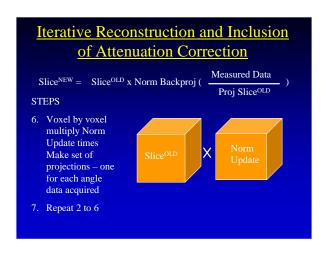
http://www.medical.philips.com/main/product s/nuclearmedicine/products/vantage_pro.html

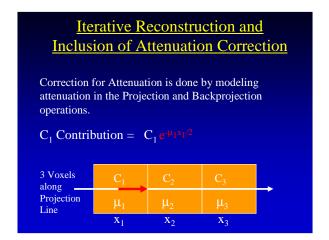

Estimation of Attenuation Maps: Combined Emission and CT imaging

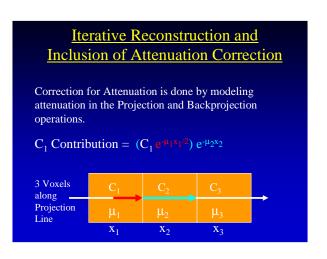

- Hasegawa, Proc SPIE 1231: 50-60, 1990.
- CT shares patient bed
- No cross-talk (x-ray intensity much greater than emission)
- Low noise
- CT anatomy for defining ROI
- Convert X-ray to Emission attenuation map
- Patient respiration and motion between CT and emission imaging
- Added radiation dose of CT

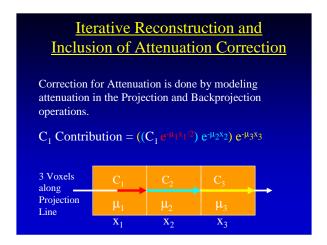

http://apps.gemedical systems.com/geCommunity/nmpet/http://apps.gemedical systems.com/geCommunity/nmpet/http://apps.gemedicalsystems.com/geCommunity/nmpet/http://apps.gemedicalsystems.com/geCommunity/nmpet/http://apps.gemedicalsystems.com/geCommunity/nmpet/http://apps.gemedicalsystems.com/geCommunity/nmpet/http://apps.gemedicalsystems.com/geCommunity/nmpet/http://apps.gemedicalsystems.com/geCommunity/nmpet/http://apps.gemedicalsystems.com/geCommunity/nmpet/http://apps.gemedicalsystems.com/geCommunity/nmpet/http://apps.gemedicalsystems.com/geCommunity/nmpet/http://apps.gemedicalsystems.com/geCommunity/nmpet/http://apps.gemedicalsystems.com/geCommunity/nmpet/http://apps.gemedicalsystems.com/geCommunity/nmpet/http://apps.gemedicalsystems.gemedic

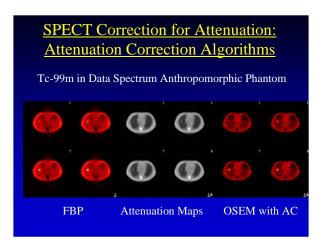



Iterative Reconstruction and Inclusion of Attenuation Correction SliceNEW = SliceOLD x Norm Backproj (Measured Data Proj SliceOLD)

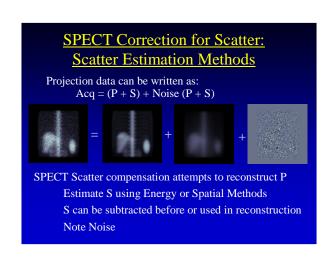


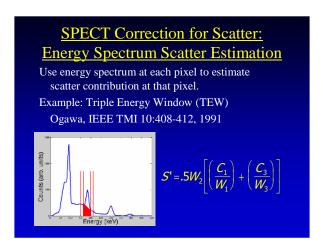


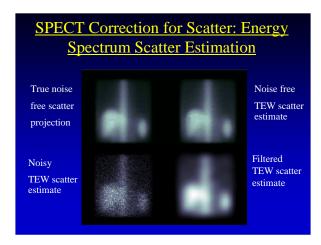


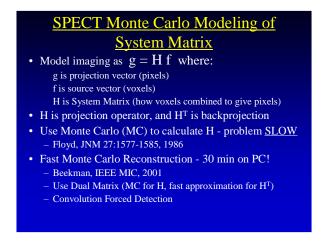


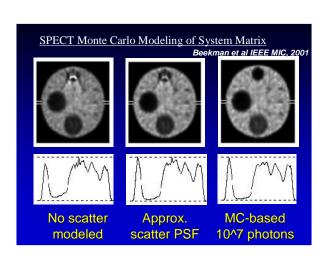


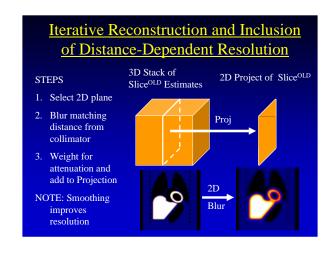


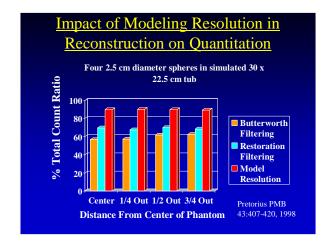


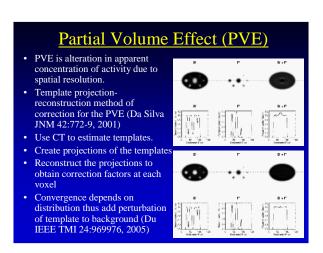




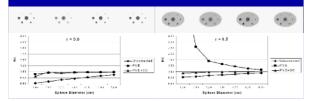








Distance-Dependent Spatial Resolution in SPECT Imaging • Resolution is Crystal combination of: – Intrinsic Resolution of Camera Head Collimator Gamma-Rays - Collimator Resolution • System spatial resolution varies with 0.4 distance from 0.2 collimator



Partial Volume Effect

Example slices and plots of recovery coefficients (RC) for 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, and 6.0 cm diameter spheres for no background (r = 0.0), and background of 50% of sphere activity (r=0.5).

RC = 1.0 is ideal value

Boening IEEE TNS 53:1205-1212, 2006

SUMMARY

- Number of applications of quantitation in nuclear medicine.
- Quantitation is very important in PET to access the efficacy of new drugs and treatments.
- With accurate modeling of imaging in iterative reconstruction SPECT is quantitative.
 - Example: He & Frey, IEEE Trans. Med Imag 2008
- Validation of reconstruction and processing methods is crucial.
- If use standard reconstruction package from manufacturer, need to be sure reconstruction is quantitatively accurate.
 - Non-quantitative Ramp Filter in FBP

READ MORE ABOUT IT

- MJ Gelfand and SR Thomas: Effective use of Computers in Nuclear Medicine. McGraw-Hill, 1988.
- M N Wernick and J N Aarsvold: <u>Emission</u> <u>Tomography: The Fundamentals of PET and</u> <u>SPECT</u>. Elsevier Academic Press, 2004.
- H Zaidi: Quantitative Analysis in Nuclear Medicine Imaging. Springer, 2006.