AbstractID: 10886 Title: A CBCT Projection Matrix method for radiation and imaging isocenter QA

Purpose: To test the use of a cone beam computed tomography (CBCT) projection matrix method for determining the imaging isocenter diameter as a replacement for the traditional gantry star shot for radiation isocenter testing.

Method and Materials: The Siemens MVision megavoltage CBCT is calibrated by imaging a geometric reconstruction phantom that contains BBs of various sizes at well characterized positions. This generates several projection matrices, P_{θ}, that define where a point in the reconstruction volume is projected onto the flat panel detector at gantry angle θ. The standard reconstruction angles are -90° to 110°. A new protocol, with angles from -30° to 170°, provides information about radiation isocenter from posterior angles. Flat panel positions projected to a plane containing the isocenter are $\left[\mathrm{U}_{\theta}, \mathrm{V}_{\theta}\right]=\left[0.276\left(\mathrm{P}_{\theta}(1,4)-\mathrm{P}_{0}(1,4)\right), 0.276\left(\mathrm{P}_{\theta}(2,4)-\mathrm{P}_{0}(2,4)\right)\right]$. The room coordinates $\left[x_{\theta}, y_{\theta}, z_{\theta}\right]=\left[U_{\theta} \cos (-\theta), U_{\theta} \sin (-\theta), V_{\theta}\right]$. The radiation isocenter ellipsoid diameters are $\left(x_{\theta}{ }^{\max }-x_{\theta}{ }^{\min }, y_{\theta}{ }^{\max }-y_{\theta}{ }^{\min }, \mathrm{z}_{\theta}{ }^{\max }-\right.$ $z_{\theta}{ }^{\text {min }}$), where superscripts max and min refer to maximum and minimum values of the room coordinate, respectively. The maximum diameter is compared to that of a traditional star shot and a Winston-Lutz type test.

Results: Traditional star shots are limited in accuracy due to the subjectivity in the analysis and set-up error. The maximum radiation isocenter diameters were about $0.8 \mathrm{~mm}, 0.9 \mathrm{~mm}$ and 1.4 mm for the star shot, Winston-Lutz test and the projection matrix analysis, respectively. The result for the projection matrix includes deviations resulting from flat panel motion and is larger than that of the Winston-Lutz test, which is unaffected by flat panel motion.

Conclusion: The projection matrix method simultaneously checks the stability of the imaging and radiation isocenter, while providing an annual geometric calibration for the CBCT system.

