Molecular Imaging as a Cancer Biomarker: Imaging to Guide Targeted Cancer Therapy

51st Annual AAPM Meeting, Anaheim CA

David A. Mankoff, MD, PhD
Seattle Cancer Care Alliance
University of Washington
Seattle, WA

work supported by NIH Grants CA42045, CA72064, S10 RR17229

thanks to Janet Eary, Paul Kinahan, Hannah Linden, Jeanne Link, Joseph Rajendran, Alex Spence, Mark Muzi, Kenneth Krohn
Disclosures

- Research funding from
 - Pfizer
 - Merck
- Discussion of investigational drugs
 - PET probes other than FDG
Molecular Imaging as a Cancer Biomarker: Outline

- Clinical/biological questions and methods to address them
- Cancer biomarker imaging
 - Prognosis
 - Targeting/Resistance
 - Early response
Anatomic versus Functional Imaging

- **Anatomic Imaging**
 - Relies on tumor size, shape, density
 - e.g., mammography, CT
 - Measures response by changes in size

- **Functional/molecular imaging**
 - Relies on in vivo tumor biology: perfusion, metabolism, molecular features
 - e.g., MRI, PET
 - Measures response by changes in functional/molecular processes
Functional Imaging Modalities

- Magnetic Resonance (MR)
 - Magnetic Resonance Imaging (MRI)
 - Magnetic Resonance Spectroscopy (MRS)
- Radionuclide imaging
 - Positron Emission Tomography (PET)
 - Single-Photon Emission Computed Tomography (SPECT)
- Ultrasound (U/S)
- Optical imaging
Why Radiotracer Imaging?
Answer: To achieve tracer conditions

- Example: Estrogen Receptor Imaging
 - Tracer specific activity: 1000 mCi/umol
 - Injected activity dose: 5 mCi
 - Injected molar dose: 5 nmol
 - Peak blood concentration: 1 nM
 (Typical estradiol blood concentration is nM)
 - Radiographic, MR, or optical agents require mM (factor of 10^6 difference!)
 - Therefore - can image biochemical processes without disturbing them
Existing Cancer Imaging Paradigm:
Targets for Detecting Tumor Cells
Higher in Tumor than Normal Tissue

Protein Synthesis
Amino Acids

DNA Synthesis
Thymidine & Analogs

Energy Metabolism
FDG, Acetate

Membrane Synthesis
Choline, Acetate

Blood Flow
Water, Sestamibi
FDG PET Detects Internal Mammary Nodal Metastases in Locally Advanced Breast Cancer

(Bellon, Am J Clin Oncol, 2004)
A New Paradigm for Cancer Imaging: Help Direct Cancer Treatment

- **New role for imaging:**
 - Guide cancer treatment selection
 - Evaluate early treatment response
Imaging and Targeted Therapy
Help Match Therapy to Tumor Biology

- **Goals in cancer treatment**
 - Characterize tumor biology pre-Rx
 - Individualized, specific therapy
 - Static response may be acceptable

- **The implied needs for cancer imaging**
 - Characterize in vivo tumor biology - predict behavior
 - Identify targets, predict response
 - Identify resistance mechanisms
 - Measure tumor response (early!)
Emerging Cancer Imaging Paradigm: Measure Factors Affecting Response Variable Levels in Tumor

- Proliferative Rate
 - Thymidine & Analogs
 - Glycolytic Rate
 - FDG

- Surface Receptors
 - Octreotide
- Nuclear Receptors
 - FES, FDHT
- Angiogenesis
- Water
 - RGD Peptides

- Hypoxia
 - FMISO, ATSM

- Drug Transport
 - MIBI, Verapamil, F-Paclitaxel
Imaging Requirement for Biomarker Imaging: Simultaneously Localize and Characterize Disease Sites

Functional/Anatomic Imaging

FDG PET

PET/CT Fusion

Functional Imaging Combinations

FDG

Glucose Metabolism

Estradiol Binding

FES
Imaging Requirement for Biomarker Imaging:

Image Acquisition and Quantitative Analysis

- **Dynamic protocols**
 - Allows kinetic modeling
 - Full range of analysis options
 - But … not for everyone

- **Static protocols**
 - Clinically feasible, robust
 - But … only simple quantification possible

![Diagram of imaging protocols and analysis](image)

- **Dynamic Imaging**
 - Time
 - Region-of-Interest Analysis
 - Kinetic Modeling
 - Parameter Estimates

- **Static Image**
 - Static Uptake Measurement (SUV)

- **Time-Activity Curves**
 - Tumor
 - Ventricle
 - Blood

- **Inject Tracer**
Guiding Cancer Therapy: Imaging Goals

Diagnosis

- **Goal 1 - Prognosis**
 - Prognosis: Predict Tumor Behavior
 - Hypoxia

- **Goal 2 - Prediction**
 - Identify Target/
 - Predict Response
 - Tumor Receptors
 - Hypoxia

Therapy

- **Goal 3 - Response**
 - Measure Response
 - Proliferation

Outcomes

- **Path Response**
- **DFS**
- **OS**

Goal 4 - Research

- Elucidate Cancer Biology
Prognostic Markers - Why Imaging?

• Tumor clinical behavior varies considerably
 • Need to match aggressiveness of treatment to aggressiveness of tumor
• Prognostic tissue biomarkers predict clinical behavior and help direct therapy, examples:
 • Ki-67 (proliferation) - lung, breast, brain, others
 • Gene expression profiles - breast
• In vivo tumor biology is complementary to in vitro assay and adds prognostic information, examples:
 • Glycolysis (FDG PET)
 • Hypoxia (FMISO PET, other probes)
FDG Predicts Survival in Recurrent Thyroid Cancer
Robbins, J Clin Endo Metab 91:498, 2006

131I-

FDG PET

High TG, Neg Scan L Cervical LN

Surviving Fraction

FDG-

FDG+

p<0.001

Months from PET Scan

FDG - (n=180)

FDG + (n=219)
Imaging Hypoxia as the Accumulation of a Radiopharmaceutical

$\text{H}_2\text{O}_2 \rightarrow \cdot\text{OH} \rightarrow \cdot\text{O}_2^- \rightarrow \text{O}_2^- \rightarrow \text{R-NO}_2^- \rightarrow \text{R-N}=\text{O} \rightarrow \text{R-NH}_2$

\textit{Radical Anion}

\textit{Nitroreductase enzymes}

\textit{Covalent bonding to macromolecules}
Tumor Hypoxia Quantified by PET Predicts Survival

FMISO PET
- **Brain Tumor**: (Spence, Clin Can Res, 2008)

FMISO PET
- **H & N Cancer**: (Rajendran, Clin Can Res, 2007)

Cu-ATSM PET
- **Cervical Cancer**: (Dehdashti, Int J Radiat Oncol Biol Phys, 2003)
Guiding Cancer Therapy: Imaging Goals

Goal 1 - Prognosis
- Prognosis: Predict Tumor Behavior
- Hypoxia

Goal 2 - Prediction
- Identify Target/Predict Response
- Tumor Receptors
- Hypoxia

Goal 3 - Response
- Measure Response
- Proliferation

Goal 4 - Research
- Elucidate Cancer Biology

Outcomes
- DFS
- OS

Path
- Response
Identifying Therapeutic Targets: Why Imaging?

- Imaging can measure the level of expression
 - Heterogeneity - spatial and temporal
 - Especially for advanced disease
- Imaging can measure the \textit{in vivo} effect of drug therapy on the target. Examples:
 - Target antagonism
 - Change in target expression
- Imaging is quantitative
- Complementary to \textit{in vitro} assay
ER Expression and Breast Cancer Endocrine Therapy

- Endocrine therapy for breast cancer
 - SERMs - e.g., tamoxifen
 - Aromatase inhibitors - e.g., letrozole
 - SERDs - e.g., fulvestrant
- ER as predictive assay
 - ER-: Response Rate < 10%
 - ER+: Response Rate 50%
 - ER+/PR+: Response Rate 75%
18F-Fluoroestradiol (FES): PET Estrogen Receptor (ER) Imaging Provides a Quantitative Estimate of ER Expression

(Kieswetter, J Nucl Med, 1984)

(Mintun, Radiology 169:45, 1988)

Validation: ER+ vs ER- Tumors

FDG

axial

Glucose Metabolism

ER+

ER-

FES

coronal

ER Expression

Liver (Liv)
FES Uptake Predicts Breast Cancer Response to Hormonal Therapy

Example 1
- Recurrent sternal lesion
- ER+ primary
- Recurrent Dz strongly FES+

Example 2
- Newly Dx’d met breast CA
- ER+ primary
- FES-negative bone mets

University of Washington

(Linden, J Clin Onc, 2006)
Brain Tumor FDG Uptake vs Survival: Tumor Volumes
- Tralins, J Nucl Med, 2002

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>.25</td>
<td>-</td>
</tr>
<tr>
<td>KPS</td>
<td>.27</td>
<td>-</td>
</tr>
<tr>
<td>T2</td>
<td>.017</td>
<td>-</td>
</tr>
<tr>
<td>T1 Gad</td>
<td>.0035</td>
<td>.91</td>
</tr>
<tr>
<td>T1 Gad + Cavity</td>
<td>.17</td>
<td>-</td>
</tr>
<tr>
<td>FDG-PET</td>
<td>.0024</td>
<td>.0024</td>
</tr>
</tbody>
</table>
Hypoxia as a Target for Radiotherapy Planning
Head/Neck CA Treatment Planning Including FMISO PET

Imaging to Direct Hypoxia-Specific Treatment

- Advanced H & N Ca
- Randomized to
 - XRT + Cisplatin/5-FU
 - XRT + Cisplatin/Tirapazamine (TPZ)
- FMISO PET (observational only)

Time-to-Locoregional Failure

FDG PET

FMISO PET

Graph showing time-to-local failure rate for different treatment regimens

Hypoxia: Cis-FU vs Cis-TPZ, P = .006
Cis-FU: No vs yes, exact log-rank P =
Resistance Due to altered Drug Transport:

11C-Verapamil PET to Measure P-gp Drug Transport

Hypotheses:

- P-gp limits drug transport into the brain
- Inhibiting P-gp will increase brain transport

11C-Verapamil

(Hendrickse, Br j Pharmacol, 1998)
Imaging P-gp Activity *in vivo* in Humans

$^{[11]C}$-Verapamil images pre- and post-cyclosporine (CSA)

88% +/- 20% increase in verapamil AUC (N= 12, P < .001)

(Sasongko, Clin Pharm Ther, 2005)
Guiding Cancer Therapy: Imaging Goals

Diagnosis

Goal 1 - Prognosis
Prognosis: Predict Tumor Behavior
Hypoxia

Goal 2 - Prediction
Identify Target/
Predict Response
Tumor Receptors
Hypoxia

Therapy

Goal 3 - Response
Measure Response
Proliferation

Outcomes

Path Response

DFS
OS

Goal 4 - Research
Elucidate Cancer Biology
Biologic Events in Response to Successful Cancer Therapy
Rationale for Measuring Early Response by Cell Proliferation Imaging

Rx

↓ Cellular Proliferation or ↑ Cell Death

↓ DNA Synthesis

↓ Viable Cell Number

↓ Tumor size
Thymidine Analogs for PET Cell Proliferation Imaging
Clinically Feasible Isotope and Imaging Protocol

18F-Fluoro-L-thymidine (FLT)

(Grierson, Nucl Med Biol 27:143, 2000)

(Shields AF, from Mankoff, Shields, and Krohn, Rad Clin N Amer 43:153, 2005)
Thymidine Incorporation Pathways
Imaging Tumor Proliferation

(Mankoff and Eary, Clin Cancer Res 14: 7159, 2008)
Early Response Measured by 18F-fluorothymidine (FLT) PET

Breast CA, ChemoRx (Kenny, EJNMMI 34:1339, 2007)

Lung CA, Genfitinib Rx (Sohn, Clin Cancer Res 14: 7423, 2008)

Pre-Rx 1 wk Rx

PET PET-CT

Day 0 Day 7

A B

Responders Nonresponders

![Graphs showing SUV max over time for responders and nonresponders.]

- **Responders**: SUV max decreases significantly from Day 0 to Day 7 ($p < 0.001$).
- **Nonresponders**: SUV max remains relatively constant with a slight increase.

R, NR

- **R**: Tumour.
- **NR**: Tumour and vertebra.
FLT Brain Tumor Imaging to Measure Response
Kinetic Analysis
(Muzi, J Nucl Med, 2006; Spence, Mol Imag Biol, 2009)

Kinetic model:
\[
\text{Flux}_{\text{FLT}} = \frac{K_{1_{\text{FLT}}} \times k_{3_{\text{FLT}}}}{k_{2_{\text{FLT}}} + k_{3_{\text{FLT}}}}
\]

Parametric Imaging:

- Pre-RT
- Post-RT

(Muzi, J Nucl Med, 2005)
Imaging as a Cancer Biomarker: Summary

- New paradigm for cancer imaging - beyond cancer detection
 - Requires novel approaches to image acquisition and analysis
 - Matches imaging to clinical questions and cancer biology
- Imaging outcomes match approach to therapy
 - How aggressive? Prognosis
 - What target? Prediction
 - Is it working? Response

... new study designs for cancer imaging research

- Image quantification key
- Complementary to tissue/serum biomarkers
ACRIN Trials with Novel PET Imaging Probes

- Opened or opening
 - ACRIN 6682 - 60Cu-ATSM and cervical hypoxia (Dehdashti, PI)
 - ACRIN 6684 - 18F-FMISO and brain tumor hypoxia (Sorenson, PI)
 - ACRIN 6687 - 18F$^-$ and prostate bone metastasis response (Yu, PI; collaboration with DOD consortium)

- Under Development
 - ACRIN 6688 - 18F-FLT and breast cancer response (Bear/Jollie, PI; collab with VCU/CIP Phase I/II)
 - Others under discussion for FLT for brain tumors and H/N CA
Acknowledgements:
UW PET Cancer P01
P01CA42045, Ken Krohn, PI

- Project 1 - Brain Tumors
 - Alex Spence
- Project 2 - Lymphoma
 - Janet Eary, Ollie Press
- Project 3 - Head and Neck Cancer
 - Joseph Rajendran
- Project 4 - Breast Cancer
 - David Mankoff, Hannah Linden
- Project 5 - Sarcoma
 - Chappie Conrad, Janet Eary
- Project 6 - Endocrine Tumors
 - Jeanne Link, Gary Mann

- Core A - Radiochemistry
 - Jeanne Link
- Core B - Physics
 - Tom Lewellen, Paul Kinahan
- Core C - Data analysis
 - Mark Muzi, Finbarr O’Sullivan
- Core D - Molecular Pathology
 - Jonathan Tait, Kevin Yagle
Bob Doot
Lisa Dunnwald
Lanell Peterson
Erin Schubert