Application of Industry best Practices to the Acceptance and Commissioning of Linear Accelerators

Chris Newcomb MEng, MBA, PhD
University of Calgary
Tom Baker Cancer Centre

Learning Objectives

- Lessons from industry best practices as they relate to acceptance and commissioning
- Concepts behind risk management at the design and systems integration levels
 - New directions in risk assessment
 - Examples of when things go wrong
 - Lessons to be learned

What are Industry best Practices?

- Cross industry boundaries
 - Tracking FEDEX
 - Customization Restaurant
 - Individual care Hotels
- Not all best practices are appropriate
 - Construction
 - Structural vs. Radiation safety
 - IT priorities
 - Access, Privacy, Integrity (Highest to Lowest)

So you have a new accelerator...

Project Management

Physicist?

Construction Vendor Installation Vendor Acceptance *Physicist*

Commissioning Physicist Design /
Integration

Vendor

Should physicists be project managers?

Pros

- Expertise in the technical aspects of the project
- Risk adverse and pro safety
- Maximum control

Cons

- Time consuming / Opportunity cost
- Expensive
- Minimal opportunity to gain experience
- Lack project management skills

Construction / Installation

- Normally vendor managed
- Hard to correct after the fact
- Trust no one!
 - Eg. Missing walls, garbage, wrong density etc

Project Management

- Recommendations from Civil Engineering:
 - Role for medical physicists as consultants specializing in installations
 - Various certifications / training available PMI

Acceptance

Comprehensiveness?

"Software is allowing us to build systems with such a high level of interactive complexity that potential interactions among components cannot be thoroughly planned, anticipated, tested or quarded against."

Nancy Leveson

- Source?
 - Vendor or user
 - Eg. All Therac 25s passed acceptance
- Final responsibility?
 - Vendor or user
 - Eg. MLC driver

Therac 25

Description:

- June 85 Jan 87, 6 patients massively overdosed
- First linac to be totally computer controlled
 - Mechanical interlocks replaced
 - Indpt. protective circuits removed
- Turntable position was not always confirmed

• Failure:

Design failure, adaptation (wrt design and use)

MLC Driver

• Description:

- During an upgrade to the 4DTC the MLC driver was not upgraded.
- Unit passed acceptance.
- MLC driver would not recognize MLC shapes associated with gantry angles <0
- No interlocks were triggered
- 16 SRS patients were mistreated

• Failure:

Design failure, failure to comply with upgrade procedure (adaptation)

Acceptance

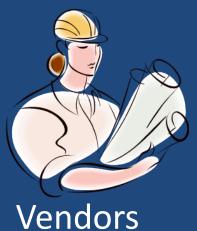
Comprehensiveness?

"Software is allowing us to build systems with such a high level of interactive complexity that potential interactions among components cannot be thoroughly planned, anticipated, tested or guarded against."

Nancy Leveson

- Source?
 - BOTH Vendor and User
 - Eg. All Therac 25s passed acceptance
- Final responsibility?
 - BOTH Vendor and User
 - Eg. MLC driver

Commissioning

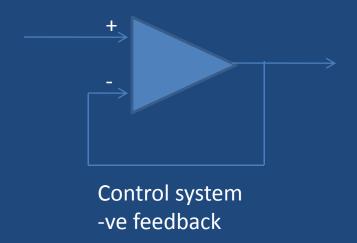

- Recommendations from Industry
 - Don't do it standardize instead
 - Eg. Containerization, guns
- Benefits LINAC Outputs
 - Able to transfer patients
 - Faster installation to treat time
 - Differences between units become obvious

Integrated System

System Issues

- Year 2000
- Time Synchronization
- Computer Viruses
- Network offline, DNS offline
- IS policies / procedures
 - New password policies
 - Real-time virus scanning
 - OS patches
 - Encryption etc
- Change management
 - Firewalls

Design


- No room for complacency
- Improved partnership needed between vendors/users
- Need for independent design reviews
 - Identify single points of failure
 - Identify conceptual design flaws

Single points of failure

- Currently single points of failure exist that can:
 - x3 max runaway gantry rotation
 - x3 max runaway couch vertical
 - >15% electron asymmetry
 - Unknown positioning of:
 - X jaw
 - Colliminator angle
 - Couch angle, vert. lat. and long.

Conceptual design flaws

- Interlocks monitor servos not output
 - Eg 3 Mile Island
- Interlocks differ between service/physics and clinical modes
- Rate of technology development >> measurement of clinical outcomes

Current Risk Modeling

- Based on event flow diagrams
- Assume independence of failures
- The Swiss-cheese model
 - holes randomly align

Appropriate to electro-mechanical systems

New Risk Models

- Need to deal with 'adaptation'
 - Systems and processes are continually changing towards faster, cheaper, easier...
 - Systematic and conscious optimization process not random
- Many events have systemic results
 - Power fluctuations
 - Network failures
 - Lack of training/ resources
 - Inappropriate policies
- The Guinness model
 - Bubbles rise to the top

Union Carbide

Description:

- Bhopal 1984, history of minor incidents leading to a single major incident, deaths estimated 1,750 – 10,000
- Cutbacks in staff numbers, training and maintenance
- Multiple levels of failure: Vent gas scrubber, flare tower, water curtain, sirens, communication

• Failure:

System wide adaptation due to cost cutting

DC-10 Cargo Door

Description:

- 1974, multiple instances
- The cargo door appeared to be closed and locked, but would explosively open at altitude.
- A sizeable section of floor and corresponding control systems failed.

• Failure:

Design flaw and inappropriate risk evaluation

3 Mile Island

Description:

- 1979, single instance
- During an increase in reactor coolant pressure a relief value opened but did not close. Indicators showed it had closed. Incorrect decisions were made on the basis of this information.

• Failure:

Design flaw – indirect measurement of output

Conclusion

- 1. Project Management of Linac installation is a specialty
- 2. Standardization where appropriate
 - Linacs / Data formats /Treatment protocols
- 3. Acceptance documents need to be a joint effort between vendors and users, open and transparent.
- Greater focus on risks associated with integrated systems.
- 5. Learn from accidents in other industries

References

- "Safeware"
- "System Safety Engineering: Back to the Future"

Nancy Leveson, MIT