Catheter-Based Ultrasound For 3D Control of Hyperthermia & Thermal Ablation with Image Guidance

Catheter-Cooled Configuration

Thermal Therapy Mediated Effects

- **Non-Lethal Moderate Temperature Exposure (40.45 °C [104-113°F])**
 - ↑ metabolism, inactivation of enzymes, rupture cell membranes, hyperemia, ↑ oxygenation, ↑ blood vessel permeability, heat shock-stress response
 - Gene therapy, drug delivery and activation, adjunct to RT/CT

- **Lethal Moderate Temperature Exposure (41-45 °C, long duration)**
 - Cellular repair mechanisms lose function or can’t keep up with accumulating damage
 - → Cell death & necrosis within 3-5 days

- **Lethal High Temperature (48-50 °C, short to long duration)**
 - Cellular and tissue structural changes
 - Thermal coagulation-irreversible protein denaturation
 - Thermal necrosis & immediate cell death

*Pearce and Thomsen 1995

Catheter-Based Ultrasound for Thermal Therapy 3D control of Hyperthermia & Ablation

- **Interstitial/Percutaneous Ultrasound Applicators**
 - Arrays of Tubular Radiators
 - Prostate, Brain, GYN, Liver, Soft Tissue Sites
 - Hyperthermia and targeted ablation

- **Transurethral/Intraluminal Ultrasound Applicators**
 - Arrays of Tubular, Planar, & Curvilinear Radiators
 - Prostate Ablation & Intrauterine Hyperthermia
 - GI/Digestive tumors

- **MR Temperature/Ablation Imaging**
 - Guidance, Treatment Control, & Assessment

→ Extrapolate to Other Site Specific Design & Treatment

Interstitial Ultrasound Applicators

- Arrays of miniature tubular PZT radiators
- 6-10 MHz, collimated beam output
- 360° or sectored for angle control (e.g., 90°, 180°, 270°)
- Catheter-Cooled Configuration
3D Control of Hyperthermia in HDR Implant
Treatment Planning for two prostate target volumes

- Selection of active length, sector, and aiming - a priori
- Tailor power control & conformal targeting

Applicators
4x10 mm Length
180° & 270° Sectors

HDR Plan
Peripheral Implant
UO+HME
Posterior Target

Technology Implemented for Clinical Hyperthermia
Enhanced spatial control & penetration

Prostate HDR+HT Implant Configuration
60 min HT, 1 Fraction
6-2x10 mm 13-g CC Applicators, ~ 7.3 MHz

USITT - Uterine Sarcoma
HDR+HT Implant Configuration

Hyperthermia 42-45°C for 45 min, 2 Fractions
Sequential HDR Brachytherapy, 4 Fractions

Directional Applicators
- avoid bone & stent
2x10 mm ~7MHz
220 and 360 deg. Applicators

Endocavity Ultrasound Applicator
Local HT + HDR Brachytherapy for Cervical Cancer

Endocavity HDR Ring Applicator

Endocavity US HT + HDR Applicator
Endocavity Ultrasound Hyperthermia
Treatment Simulation of cervix target treatment
Dual Sector Applicator

Dynamic Axial and Directional Control of Ablation
Biothermal Simulations of High-Intensity Ultrasound Devices

Dynamic Axial and Directional Control of Heating
Experiment – ex vivo and in vivo

Thermal Ablation of Uterine Fibroids
Shaped Thermal Coagulation – Ex Vivo Specimens

CTV

Clinical Target Volume

Radial Depth of Lesion (mm)

Axial Position (mm)

Axial Control
Multiple Transducer Segments
Independent Power Control

Angular Control
Secected Tubular Radiators
Pre-Selected Directioity

Concept
• Hysteroscopic or Laparoscopic
• Similar to RF, Laser, & Cryo
• Fast, Large Volume Ablation
• Selective Targeting, MRTI possible

Experiment
• Surgical Specimens
• 8 mm Ablations
• Ex Vivo Lesions
• TTC Stained
• ~ 4 cm OD x 5 cm long
Liver Ablation

Example of Tailored Lesions Ex Vivo

- 3x360° at 13 W, 10 min
 - 4.2 cm wide x 3.5 cm long
- 3x160° at 12 W, 10 min
 - 2.0 cm radial x 3.2 cm long
- 3x 360° Cluster Array
 - 7.5 cm x 4.2 cm long

Ultrasound Strain Imaging
- Terason Imaging probe
- External Compression
- RF data 15fps, <1 min comp time

MRTI for Device Evaluation & Control

- 0.5T GE Interventional MRT, 1.5T and 3.0T GE
- Applications for Prostate Ablation

MR Thermal Imaging (MRTI)
- Phase-difference mapping (PRF shift)
- SPGR (TE/TR=10-15 ms/120-190 ms, FA=60°)
- Endorectal receive coil maximizes SNR
- Resolution: 1.6 mm x 1.6 mm, 1.2 °C
- 3 planes simultaneously, 1-2 updates
- Integrated cooling on endorectal coil

Real-Time Monitoring Software
- Current Temperature
- Temperature Thresholds (52 °C)
- Thermal Dose (t > 120-240 min)

Interstitial Ultrasound

Directional And Longitudinal Control of Lesion

Experimental Setup:
- Applicator: 10 mm x 180 deg., 7.2 MHz
- Canine Prostate – In Vivo
- Ventral Placement, Direct Away from Urethra
- Chronic Study → Slow Controlled Heating
- 10-14 W Modulated for 15 min

MRTI Guided USITT - In Vivo Prostate, 0.5 T

- Dynamic Rotation of Interstitial Applicator w/MR Control

Temperature Distribution Mid-Gland
- 15-20 mm radial penetration in vivo
- Manual rotation/sweeping possible
- Conformal treatment

→ Conforming Therapy to Target Boundary
Multiple Applicator Implant
In Vivo Prostate – “Posterior” 3-180° Applicators

- **Maximum Temp**:
 - Urethral Cooling
 - Endorectal Cooling

- **Thermal Dose**:
 - 50 min
 - 240 min
 - 1000 min

- **Power Applied**: 5-17 W, 20 min

Nau et al., Medical Physics 2005

Targeted Prostate Thermal Therapy w/ MRg
Transurethral Catheter-Based Devices – BPH & Cancer

- Design Schema and Strategies
 - Linear Transducer Array
 - Flexible Delivery Catheter
 - Urethral Cooling Balloon
 - Tubular, Planar, Curvilinear
 - Real-time MRTI monitoring/control

- Develop devices and evaluate approaches for delivering conformal therapy within *in vivo* canine prostate with MR temperature monitoring.

Multi-Sected Tubular Transurethral Applicator
Dynamic Angular & Length Control Without Movement

- Tubular Array
 - 3.5 mm x 6 mm PZT
 - 3 x 120° sectors/tube

- Bladder Balloon

- Inflatable urethral cooling balloon

- Rotation & translation of assembly for initial position

Tri-Sected Tubular Transurethral Applicator
In Vivo Canine Prostate Evaluations (n=3) with MRTI

- Case 1 – Dual-sector Control
- Case 2 – Translation w/ Coronal MRTI
- Case 3 – Tri-sector Control

- Fast selective treatment with dynamic angular control (10-15 min)
- Practical control with MRI feedback

Kiney et al. 2008
Curvilinear Transurethral Applicator
In Vivo Canine Prostate – Single Shots

- Lightly Focused Transducers, 6.5 MHz
- Multiple transducers (2-10mm x 3.5mm)
- 15-20 mm penetration, 1-2 minute shots
- Narrow lesions (~10-20°, 5 mm wide)
- Rotational sweeping w/ MRI compatible motor

Maximum Temp. Thermal Dose

Discrete Shots

Curvilinear Transurethral Applicator
In Vivo Canine Prostate – Conformal Targeting

- MRTI Control (Power, Position)
- ~52°C, t43 > 240 min at boundary
- 6.5 MHz, 10° sequential rotation

S-1

S-2

Catheter-Based Ultrasound Thermal Therapy
Summary

- Produce 3D conformable and effective heating patterns – penetration, dynamic axial and variable angular control
- Tailor heating for sequential hyperthermia within an HDR implant
- Transurethral and interstitial provide conformal & selective ablation
- Coupling MRTI with dynamic power control has potential for “precise” therapy targeting to prescribed boundary
- Dual mode devices – potential for delivery and guidance
- More complex but precise therapy possible
- Configurations adaptable for site and disease specific therapy

Acknowledgments

UCSF
Jeff Wootton
Xin Chen
Punit Prakash
Titania Juang
IC Joe Hsu
Jean Pouliot
Adam Curhia
Paul Stauffer
Will Nau
Tony Ross
Adam Kinsey

Stanford
Kim Butts Pauly
Viola Rieke
Graham Sommer
Harchi Gil
Donna Bouley

Acoustic MedSystems
E. Cliff Burdette
MRTI Guided USITT
In Vivo Canine Brain Tumor

Setup:
- Implanted TVT Tumor
- Craniotomy 5 mm Burr Hole
- PRF: Interleaved gradient echo EPI
 (TR/TE=1000ms/40 ms, FA=60°)

ICDC Applicator:
- 2.2 mm OD x 10 mm, ~7.1 MHz, ~60°
- ~4-12 W for 10 min, 20 ml/min at 22 °C

Cooling T1 CE:
t1/2 = 50 min

Tumor: 1.7 cm OD