kV- & MV-CBCT Imaging for Daily Localization: Commissioning, QA, Clinical Use, & Limitations

Moyed Miften, PhD
Dept of Radiation Oncology
University of Colorado Denver
Questions

- Disease Stage (local, regional, metastatic)
- Tumor location
- Edge of the tumor volume
- Nodes involvement
- Tumor within Rx fields
 - Respiratory Motion
- OARs location
- Modulate the intensity to maximize the therapeutic ratio
In-Room Imaging Technologies

CT on rails

2D kV Imaging

kV CB Imaging

kV & MV CB Imaging

kV CB Imaging

MV-CT Imaging

- helical delivery, similar to spiral CT ± 360 degrees
- binary MLC beam shaping
- on-line MVCT imaging (Tomolmage)
- on-line treatment verification (over 700 individual detectors)
Mega-Voltage CBCT

- MV-CBCT features & characteristics
- The image quality vs. exposure challenge...
- ... and an elegant workaround
- MV-CBCT as a localization system
- Thinking outside the box
- QA
- Clinical experience
- Conclusions
MV-CBCT Basics

3, 5, 8, 10, 12, & 15 MU delivery protocols (0.01-0.1 MU per projection)
Features of MV-CBCT

- Volumetric patient image using a 6x beam
- High sensitivity a-Si panel
- Synchronization of beam pulse & panel read out
- Gantry rotation of 200 degrees
- Time: acquisition ~ 50 sec & recon. ~ 1 min
- 27 cm³ max FOV (FS 27.4 x 27.4 cm & SID @ 145 cm)
- Slice thickness range: 1 mm to 5 mm
- CT image sizes: 128², 256² or 512² pixels
- Dose delivered 3 cGy – 12 cGy
MV-CBCT Configuration

- **CB Protocol Name**: Cone beam 1SMU
- **MUs (1-200)**: 4, 10, 15 MU
- **Slice Size**: 128x128, 256x256, 512x512
- **Slice Thickness**: 0.5 to 10 mm
- **Reconstructing Kernel**: Smoothing, Smoothing H&N, Smoothing pelvis
MV-CBCT Localization

Acquisition

Table offsets

Reconstruction

Registration

4-6 minutes
An Integrated System
Image Contrast vs. Exposure

Image Quality Phantom
CNR vs. Dose for 7 MU Protocols and 3 Materials

CNR ~ $\sqrt{\text{dose}}$

$\rho = 1.5$

$\rho = 1.2$

$\rho = 1.09$

35%

15%
Resolution vs. Exposure

- Smallest visible bar group was 0.3 lp/mm for the 3 & 5 MU protocols
- 0.4 lp/mm for all other protocols.
- kV-CT was 0.6 lp/mm
Improved Contrast & Resolution at Higher Doses But...

2.5 cGy

Sufficient bony anatomy at 2.5 cGy

9 cGy

Better Soft Tissue Contrast

Bony Structures
Patient Imaged w/ 10 cGy
Dose Verification & Simulation

<table>
<thead>
<tr>
<th>Phantom Diam.</th>
<th>16 cm</th>
<th>32 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU Protocol</td>
<td>10 MU</td>
<td>15 MU</td>
</tr>
<tr>
<td>Method</td>
<td>Meas</td>
<td>Calc</td>
</tr>
<tr>
<td>Isocenter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>10.3</td>
<td>10.2</td>
</tr>
<tr>
<td>90°</td>
<td>8.9</td>
<td>8.7</td>
</tr>
<tr>
<td>180°</td>
<td>6.9</td>
<td>7.1</td>
</tr>
<tr>
<td>270°</td>
<td>8.3</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Measurements and calculations are within 0.5 cGy

Gayou, Parda, Johnson, and Miften, Med Phys 34, 499-506 (2007)
Model the CB imaging beam as an arc beam.
IMRT Incorporating Dose from MV-CBCT
DVHs w & w/o MV-CBCT

IMRT Plan w/o CB

IMRT Plan w/ CB

Patient A

Patient B

US vs. MV-CBCT vs. FM for Prostate

US: 696 couch alignments for 19 patients

CBCT: 598 couch alignments for 17 patients

FM: 393 couch alignments for 12 patients
US vs. MV-CBCT vs. FM for Prostate
Shift Histogram Distribution

Frequency

3D distance (mm)

0 10 20

US MV-CBCT FM
Prostate Systematic & Random Errors

<table>
<thead>
<tr>
<th>Localization method</th>
<th>AP (mm)</th>
<th>LR (mm)</th>
<th>SI (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>-1.0 ± 5.9</td>
<td>-1.2 ± 6.8</td>
<td>-2.8 ± 5.1</td>
</tr>
<tr>
<td>MV-CBCT</td>
<td>-0.3 ± 3.9</td>
<td>1.0 ± 3.9</td>
<td>-1.3 ± 2.5</td>
</tr>
<tr>
<td>FM</td>
<td>0.5 ± 4.1</td>
<td>-1.0 ± 3.4</td>
<td>0.0 ± 3.4</td>
</tr>
</tbody>
</table>
Percentage of Shifts Greater than 5 mm

Prostate PTV Margins

<table>
<thead>
<tr>
<th>Localization Method</th>
<th>AP</th>
<th>LR</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV-CBCT</td>
<td>16%</td>
<td>18%</td>
<td>6%</td>
</tr>
<tr>
<td>US</td>
<td>38%</td>
<td>34%</td>
<td>31%</td>
</tr>
<tr>
<td>CB</td>
<td>16%</td>
<td>18%</td>
<td>6%</td>
</tr>
<tr>
<td>FMFM</td>
<td>20%</td>
<td>14%</td>
<td>10%</td>
</tr>
</tbody>
</table>

van-Herk formula: \[M = 2.5\Sigma + 0.7\sigma \]

Prostate PTV Margins

- US data: 12.4 mm
- CB data: 8.2 mm
- FMFM data: 20.5 mm

• NSCLC, right Upper Lobe, Stage IIIA T2 N2 M0
• MV-CBCT well suited for localization of tumor, but does NOT show tumor motion
Checking Motion MV-Cine

1 cm peripheral lung mass
Patient treated w/ 3DCRT

5 cm lung mass
PTV Margin: 5mm, 10mm
Patient treated w/ IMRT

Motion in LR, AP, & SI can be seen

Reitz, Gayou, Parda, and Miften PMB 53, 823-836 (2007)
QA Procedures & Frequency

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Daily</th>
<th>Monthly</th>
<th>2x/yr</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position calibration</td>
<td></td>
<td></td>
<td>✓</td>
<td>PI, reticule</td>
</tr>
<tr>
<td>Gain calibration</td>
<td></td>
<td>✓</td>
<td></td>
<td>PI</td>
</tr>
<tr>
<td>Dead pixel map</td>
<td></td>
<td>✓</td>
<td></td>
<td>PI</td>
</tr>
<tr>
<td>EPID image quality</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>Vegas, PIPSpro</td>
</tr>
<tr>
<td>Horizontal pos. accuracy</td>
<td>✓</td>
<td></td>
<td></td>
<td>PI, reticule</td>
</tr>
<tr>
<td>Vertical pos. accuracy</td>
<td></td>
<td>✓</td>
<td></td>
<td>Ruler</td>
</tr>
<tr>
<td>Geometry calibration</td>
<td></td>
<td></td>
<td>✓</td>
<td>George phantom</td>
</tr>
<tr>
<td>CB gain calibration</td>
<td></td>
<td>✓</td>
<td></td>
<td>CB 15, 60 MU</td>
</tr>
<tr>
<td>3D image quality</td>
<td></td>
<td>✓</td>
<td></td>
<td>Ema phantom</td>
</tr>
<tr>
<td>Reconstr. & Registration</td>
<td></td>
<td>✓</td>
<td></td>
<td>Ema phantom</td>
</tr>
<tr>
<td>Dose</td>
<td></td>
<td>✓</td>
<td></td>
<td>Ion chamber</td>
</tr>
</tbody>
</table>

Gayou and Miften, Med Phys 34, 3183-3192 (2007)
Which Patients Should be Imaged with CB?

- Tumors adjacent to critical structures
- Tumors prone to inter-fractional motion
- Tumors with intra-fractional motion-
 (Preference: 4-D planning)
- Tumors prone to deformation
- Compliant patients
CBCT: Clinical Responsibilities

- Physician
 - Determine clinical indication(s)
 - Order CBCT
 - Determine frequency
 - Review images (day 1, twice/weeks, daily??)
 - Define primary ROI for physicist/therapist
 - Define set up parameters
 - Review daily shifts
CBCT: Clinical Responsibilities

- **Physicist** -
 - Available to review images & shifts daily
 - QA, calibration, output, image quality…etc

- **Dosimetrist** -
 - Dose compensation or incorporation

- **Therapist** -
 - Review images
 - Make appropriate table shifts
Ordering a CB for a Patient

Physician
- Daily, twice/wk, weekly

Physician
- Soft-tissue or bony anatomy

Physicist
- Imaging protocol
 - 4 MU or 8-15 MU

Physicist
- Physician by machine console for 1st Rx

Frequency

Registration

Exposure

Review & Thresholds
Workflow: Physician EMR Order
IGRT at the Clinic Practice Level

- Therapist oversight and competencies
- Hybrid imaging schedules
- Improve immobilization and patient marking processes
- Additional CBCT devices are needed to handle clinical needs
- Use CBCT to implement more sophisticated ART techniques
- Decrease PTV
- Improve clinical outcomes
Conclusions

• MVision is a viable tool for treatment localization

• Observed inter-fractional variations are patient specific and site-dependent

• Application of MV-CBCT for daily localization with good-image quality

• Application of MV-CBCT for verification of intra-fractional motion immediately prior to Tx
Acknowledgment

Olivier Gayou, PhD
Bodo Reitz, PhD
Quentin Diot, PhD
Team at Allegheny General Hospital
Team at Univ. of Colorado Hospital
Siemens Medical Solutions Hospital