Dosimetry Metrology for IMRT
Part I
Robin L. Stern, Ph.D.
University of California, Davis

Outline

• Challenges of IMRT dosimetry
• Detectors
 – 1-D (point) detectors
 – 2-D
• Phantoms
 – Geometric
 – Anthropomorphic

Challenges of IMRT Dosimetry

• Importance of penumbral and peripheral field dose
• Complexity of the dose distribution
 – Numerous steep dose gradient regions, even within the target volume
• Dynamic dose delivery
 – Fluence shape and intensity vary during tx
 – Scan-based dose measurements impractical
 – IMRT limited to integrating dosimetric techniques

TG120 Recommendations

• QA should concentrate on cumulative delivered dose rather than only individual segments
• Verify dose at multiple locations
• Verify absolute position of the dose gradients
Detector Characteristics

- Stability
- Linearity of response
- Directional dependence
- Beam-quality dependence
- Absolute vs. relative
- Size
- Immediacy of results
- Stem and cable effects
- Cost and convenience

Point Detectors

- Small-volume ion chambers
- Diodes
 - Silicon
 - Diamond
- TLDs
- MOSFETs

Small-Volume Ion Chambers

Advantages
- Stability
- Linear dose response
- Small directional dependence
- Energy independence
- NIST-traceable calibration

Disadvantages
- Volume averaging
- Energy response dependence if central electrode of high Z material.
- Stem effect

Use for
- Absolute dose measurements

Do not use for
- Penumbra of profiles used for modeling
- Inter- and intra-leaf measurements

Guidelines
- If high-Z electrode, cross-calibrate under similar conditions
- Dose heterogeneity < 5-10% across chamber
- For comparisons, calculate average dose throughout active volume
Silicon Diodes

- **Advantages**
 - Very small active volume (smaller than IC)
 - High sensitivity

- **Disadvantages**
 - Over-responsive to low-energy photons
 - Some energy dependence
 - Dose-rate dependent
 - Angular dependence for non-normal incidence
 - Change in sensitivity over time due to radiation damage

Diamond Detectors

- **Advantages**
 - Very small active volume
 - High radiation sensitivity
 - Nearly tissue equivalent, though much more dense
 - Small directional dependence
 - High radiation hardness

- **Disadvantages**
 - May be dose-rate dependence
 - Expensive

Diodes

- **Use for**
 - Relative dose measurements
 - Regions of high dose gradient

- **Do not use for**
 - Peripheral region of profiles used for modeling

- **Guidelines**
 - Use unshielded silicon diode detectors
 - Don't use in-vivo diodes for phantom meas.
 - Monitor detector sensitivity
 - Consider/monitor orientation of diode to beam
 - Pre-irradiate diamond detectors to ~5 Gy

TLDs

- **Advantages**
 - Small size
 - Nearly tissue equivalent, density closer to tissue (LiF)
 - No cable

- **Disadvantages**
 - Nonlinear dose response
 - Some energy dependence
 - Labor-intensive
 - Delayed readout
TLDs

- **Use for**
 - Geometry which does not allow ion chambers
 - Multiple point measurements
- **Do not use for**
 - Absolute measurements needing precision <3%
- **Guidelines**
 - Use low-atomic number TLDs, e.g. LiF
 - Establish and follow strict handling, annealing, and calibration protocols
 - Use an automatic TLD reader

MOSFETs

- **Advantages**
 - Very small size
 - Linear dose response
 - Small directional dependence
 - Immediate readout
- **Disadvantages**
 - Not tissue equivalent
 - Some energy dependence
 - Limited lifetime
 - Change in sensitivity over time due to radiation damage

MOSFETs

- **Use for**
 - Geometry which does not allow ion chambers
 - Multiple point measurements
 - Situations needing real-time readout
- **Do not use for**
 - Absolute measurements needing precision <3%
- **Guidelines**
 - Monitor detector sensitivity
 - Monitor total lifetime exposure

2-D Detectors

- **Film**
 - Radiographic
 - Radiographic
- **Array detectors**
 - Diodes
 - Ion chambers
Radiographic Film

- Advantages
 - High spatial resolution
 - Relatively inexpensive
- Disadvantages
 - Light sensitive
 - Oversensitive to low-energy photons
 - Dependence on film batch, processor conditions, digitizer
 - Need to measure response curve for each measurement session

- Use for
 - Relative planar dose measurements
 - Penumbra of profiles used for modeling
 - Relative output factors for small fields
- Do not use for
 - Absolute measurements
- Guidelines
 - Choose a film with appropriate speed (EDR2)
 - Measure response curve for every experiment
 - Follow recommendations of TG69 (Med Phys 34, 2228-2258; 2007)

Radiochromic Film

- Advantages
 - High spatial resolution
 - Does not require processing
 - Not sensitive to indoor light
 - Nearly tissue-equivalent
 - Decreased sensitivity to low-energy photons
- Disadvantages
 - Low OD at clinical doses
 - Susceptible to scanner artifacts
 - Post-irradiation coloration

- Scanner non-uniformity
- Orientation dependence
Radiochromic Film

OD change after exposure

Zeidan et al., Med Phys 33:4064-72;2006

Cheung et al., PMB 50:N281-5;2005

- Use for:
 - Relative planar dose measurements
 - Penumbra of profiles used for modeling
 - Relative output factors for small fields
- Do not use for:
 - Absolute measurements
- Guidelines:
 - Characterize scanner response and establish consistent scanning protocol
 - Wait ≥2 hour after irradiation before scanning
 - Measure response curve for every experiment

2D Arrays

- **Advantages**
 - Immediate readout
 - Absolute or relative dose
 - Ease of use
- **Disadvantages**
 - Lower spatial resolution
 - (detector spacing ≥0.7 cm)
 - Limited active area
 - Require normal incidence beam delivery
 - Do not give “true” composite results

2D Arrays – Diode vs. Ion Chamber

<table>
<thead>
<tr>
<th></th>
<th>2%³ cm²</th>
<th>2%² cm²</th>
<th>3%³ cm²</th>
<th>3%² cm²</th>
<th>3%³ cm²</th>
<th>3%² cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeV Field A</td>
<td>97.5%</td>
<td>94.9%</td>
<td>96.1%</td>
<td>98.4%</td>
<td>96.9%</td>
<td>94.9%</td>
</tr>
<tr>
<td>MeV Field B</td>
<td>91.9%</td>
<td>97.2%</td>
<td>94.6%</td>
<td>98.8%</td>
<td>95.1%</td>
<td>92.9%</td>
</tr>
<tr>
<td>MeV Field C</td>
<td>99.9%</td>
<td>97.8%</td>
<td>97.8%</td>
<td>97.2%</td>
<td>99.4%</td>
<td>97.8%</td>
</tr>
<tr>
<td>Average (3 MeV)</td>
<td>97.4%</td>
<td>96.7%</td>
<td>96.2%</td>
<td>98.4%</td>
<td>96.6%</td>
<td>96.4%</td>
</tr>
</tbody>
</table>

Li et al., JACMP 10:62-74;2009
2D Arrays

- Use for
 - Relative and absolute planar dose measurements
 - linac and patient-specific QA
- Do not use for
 - initial commissioning
- Guidelines
 - Evaluate array calibration stability before use
 - Pass/fail criteria must take spatial resolution into account

Phantom Characteristics

- Material
 - Water-equivalent or known electron-density
- Homogenous or heterogeneous
- Geometric or anthropomorphic
- Allowable detectors
- Flexibility in detector positioning
- Fiducials for setup accuracy and reproducibility
- Light tight, internally opaque for radiographic film
- CT characterization

Water Tank

- Allows great flexibility in detector position
- Can accommodate variety of detectors
 - Must be water-proof or have water-proof sleeves
- Restricted to gantry oriented straight down (0°)
- Use for
 - Initial commissioning
 - Depth dose, profiles, output factors
 - Beam assessment
 - Flatness/symmetry

Slab Phantoms

- Water-equivalent plastic
- Can include heterogeneities
- Custom cutouts for IC or other detectors
- Limited flexibility in detector position
- Allow film
- May be scribed with lines for setup accuracy
- Use for single or composite beams
- Ease of use
Slab Phantoms
- Gammex 473 Planar Phantom
- CIRS Cube Phantom
- Standard Imaging ACE IMRT Phantom
- PTW IMRT Body Phantom

Cylindrical Phantoms
- Same properties as slab phantoms but usually not as flexible in detector/film position
- Convenient geometry for composite beams – more “realistic” than slab phantom

Cylindrical Phantoms
- Modus Medical QUASAR verification phantom
- PTW Verification H&N Phantom
- Tomotherapy “Cheese” Phantom

Anthropomorphic Phantoms
- Useful for assessing overall IMRT planning and delivery process
 - Better simulation of human setup and irradiation
- Limited flexibility in detector and film placement
- More difficult to set up accurately
- Difficult to determine causes of dose distribution discrepancies
 - May require additional measurements in simpler geometric phantoms
Anthropomorphic Phantoms

CIRS IMRT Thorax Phantom

Standard Imaging Dose Verification Phantom

Summary

- Main challenges for IMRT dosimetry are
 - small fields
 - complex dose distributions with steep gradients
 - dynamic dose delivery
- No one detector or detector system is adequate for all IMRT commissioning and QA
- No one phantom is adequate for all IMRT commissioning and QA
- Select the appropriate chamber/phantom combination for each measurement situation