ACR MRI Accreditation Program Update

Donna M. Reeve, MS, DABR, DABMP
Department of Imaging Physics
University of Texas M.D. Anderson Cancer Center

Educational Objectives

- Present requirements of the new six-module ACR MRI program.
- Discuss the medical physicist / MR scientist qualifications and CME requirements.
- Describe small and large phantom image acquisition and analysis.
- Discuss considerations for specific scanner configurations in the accreditation and phantom image evaluation process.

ACR accreditation

- Purpose is to set quality standards for practices and to help continuously improve the quality of patient care
- To be educational in nature. The ACR Accreditation Programs evaluate qualifications of personnel, equipment performance, effectiveness of quality control measures, and quality of clinical images

ACR MRI Accreditation Program History

- 1996 – ACR MRI Program launched (whole body approach)
- 2005 – 3 Tesla magnets included
- 2006 – Documentation of QC and Annual System Performance Evaluation required
- 2008 – Modular approach

MR Accreditation Program Statistics

Program initiated in 1996. As of October 2008:
- 4840 accredited MRI facilities with 5852 units
- 5358 active facilities (accredited or under review) with 6569 units

<table>
<thead>
<tr>
<th>Pass Rate</th>
<th>FY 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>69%</td>
</tr>
<tr>
<td>2nd attempt</td>
<td>93%</td>
</tr>
<tr>
<td>3rd attempt</td>
<td>99%</td>
</tr>
</tbody>
</table>

New Modular Program

- Head
- Spine
- Musculoskeletal (MSK)
- Body
- Magnetic Resonance Angiography (MRA)
- Cardiac

*Breast MR: to be included with Breast Imaging Accreditation programs (Mammography, Stereotactic Breast Biopsy, Breast Ultrasound)
Change in patterns of practice

1990’s:
- General whole body MR imaging predominant
- ACR Whole Body program:
 - brain, C-spine, L-spine, knee exams submitted for all units
- Phantom images: ACR series and site-specific routine brain series submitted for accreditation
- Separate Cardiac program

Change in patterns of practice

Current practice is varied:
- Large bore scanners – whole body imaging
- Large bore scanners dedicated to limited anatomic applications (e.g. neuro-, cardiac-, MSK-only)
- Single application specialty scanners (small bore orthopedic)

Modular program aligns accreditation with clinical use of each magnet

ACR MRI Accreditation Program

- Additional guidance documents
- Guidance documents available www.acr.org
- Online application process
- Longer time period to acquire phantom and clinical images (+/- 1 month from phantom exam)

ACR MRI Accreditation Program

- Unit based facility accreditation program: “For every unit must apply for all modules routinely performed on that unit for a facility to be accredited.”
- Allowances made for loaner units and “emergency use of magnets”
 - <10 exams in 30 day period, or
 - <50 exams in any 12 month period

- MRI scanners dedicated to Interventional MRI and Radiation Therapy treatment planning are exempt.

Submission materials

- Scanner information
- Annual medical physicist performance report
- Personnel qualifications and CMEs
- Clinical images for each module applying for
- Phantom images with site scanning data form
- Most recent quarter of QC data
- $$$$$

Cost of MR Accreditation

<table>
<thead>
<tr>
<th>Type</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accreditation First unit:</td>
<td>$2400 (1-4 modules)</td>
</tr>
<tr>
<td></td>
<td>$2600 (5 modules)</td>
</tr>
<tr>
<td></td>
<td>$2800 (6 modules)</td>
</tr>
<tr>
<td>Second unit:</td>
<td>$2300 (1-4 modules)</td>
</tr>
<tr>
<td></td>
<td>$2500 (5 modules)</td>
</tr>
<tr>
<td></td>
<td>$2700 (6 modules)</td>
</tr>
<tr>
<td>Repeat:</td>
<td>$800 per unit clinical or phantom images</td>
</tr>
<tr>
<td></td>
<td>$1600 for both</td>
</tr>
</tbody>
</table>
Cost of MR Accreditation

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add units (mid cycle) or add module (mid cycle)</td>
<td>$1600 per unit</td>
</tr>
<tr>
<td>Replacement certificate</td>
<td>$65 per unit</td>
</tr>
</tbody>
</table>

Guidance documents

- **www.acr.org**
- MRI Accreditation Program Requirements
 - ACR Technical Standards
 - Clinical images – guidance documents
 - Describes criteria ACR uses to evaluate clinical images submitted for each of the six modules:
 - Head
 - Body
 - Spine
 - MRA
 - MSK
 - Cardiac
 - To be covered by the next speaker

2004 ACR MRI Quality Control Manual

- Radiologist’s section
- Technologist’s section
- Medical Physicist’s section

In the process of being revised.

MRI Quality Control program

- Weekly Tests described in Technologists’ section of QC Manual
- Weekly required (daily recommended)
- ACR phantom or other phantom if meets criteria:
 - Relaxation and coil loading properties similar to tissue
 - Fits typical head coil
 - Easily and reliably positioned

MRI Quality Control program

- Technologist’s Weekly/daily QC tests:
 1. Center frequency
 2. Table positioning
 3. Setup and scanning
 4. Geometric accuracy
 5. High-contrast resolution
 6. Low contrast resolution
 7. Artifact analysis
 8. Laser camera QC (if applicable)
Medical Physicist/MR Scientist

Medical Physicist:
- Board Certification in radiological physics or diagnostic radiological physics (recommended*)

 Ref: ACR Accreditation Program Requirements, 2009

- Board Certification in appropriate subfield(s) by the American Board of Radiology (ABR), the Canadian College of Physics in Medicine, or for MRI, by the American Board of Medical Physics (ABMP) in magnetic resonance imaging physics.

 Ref: ACR Technical Standard for Diagnostic Medical Physics Performance Monitoring of MRI Equipment, 2006

MR Scientist:
- A qualified MR Scientist is an individual who has obtained a graduate degree in a physical science involving nuclear MR or MRI. Should have 3 years documented experience in a clinical MRI environment.

Medical Physicist/MR Scientist

Continuing Medical Education:
- As of July 2007, the medical physicist or MRI scientist must have earned at least 15 CME hours in MRI (half must be Category 1) in the prior 36 month period.

 Ref: “MRI Accreditation Program Requirements”, rev1-12-2009, www.acr.org

Must be familiar with
- principles of MRI safety for patients, personnel, public
- FDA guidance for MR diagnostic devices
- NMR physics and MRI technology, including function, clinical uses, performance specs of MRI equipment, calibration processes & performance testing hardware, procedures and algorithms.

 Ref: “MRI Accreditation Program Requirements”, rev1-12-2009, www.acr.org

Must have a working understanding of clinical imaging protocols and methods of their optimization.

Proficiency should be maintained by participation in continuing education programs of sufficient frequency to ensure familiarity with current concepts, equipment and procedures.

Ref: “MRI Accreditation Program Requirements”, rev1-12-2009, www.acr.org

Medical Physicist/MR Scientist

- May be assisted in obtaining test data by other individuals who must be properly trained and approved by the qualified MP/MR scientist in:
 - testing techniques
 - reason for and importance of the test results.

- Qualified MP/MR scientist must review and approve all measurements.

- Expected to provide direct on-site supervision.

Ref: “MRI Accreditation Program Requirements”, rev1-12-2009, www.acr.org
Medical Physicist or MR Scientist

- “You must utilize the services of a qualified medical physicist/MR Scientist for the Annual System Performance Evaluation.
- A qualified medical physicist/MR scientist must have the responsibility for overseeing the equipment QC program and for monitoring performance upon installation and routinely thereafter.”
- The ACR strongly recommends using the services of a qualified medical physicist or MR scientist during both the process of accreditation and for oversight of your site’s technologist quality control program.”

Medical Physicist: Annual System Performance Evaluation

Must include tests defined in 2004 ACR MRI Accreditation manual:

- Magnetic Field Homogeneity
- Slice Position Accuracy
- Slice Thickness Accuracy
- Radiofrequency Coil Checks
- Soft-Copy Displays (Monitors)
- *Inter-slice Radiofrequency Interference test

Medical Physicist: Annual System Performance Evaluation

Must include evaluation of technologist QC program:

- Setup/positioning accuracy
- Center frequency
- Transmit gain/attenuation
- Geometric accuracy
- Spatial resolution
- Low contrast detectability
- Artifact analysis
- Film QC
- Visual checklist

Additional recommended tests: ACR Technical Standard for Diagnostic Medical Physics Performance Monitoring of MRI Equipment

1. Physical and mechanical inspection
2. Phase stability
3. Magnetic field homogeneity
4. Magnetic field gradient calibration
5. Radiofrequency (RF) calibration for all coils
6. Image signal-to-noise ratio (SNR) for all coils
7. Intensity uniformity for all volume coils
8. Slice thickness and location accuracy
9. Spatial resolution and low contrast object detectability
10. Artifact evaluation
11. Film processor quality control (QC)
12. Hardcopy fidelity
13. Softcopy fidelity
14. Evaluation of MRI safety – environment and posting

Medical Physicist: Oversight of Quality Control program

- Train/advise technologist:
 - Daily/weekly QC phantom image acquisition
 - Image evaluation and measurements
- Establish baselines and define pass/fail criteria
- Advise the technologist how to respond to test failures
- Review QC results at regular intervals
- Communicate test results and recommend corrective actions
Medical Physicist

- Scanner purchase specifications
- Acceptance testing and scanner testing after major upgrade or repair
- Evaluate phantom images prior to acquisition of clinical exams and submission to ACR
- Evaluate protocols – meet ACR spatial and temporal resolution requirements
- Protocol development and optimization

ACR MR Accreditation Phantoms

Manufacturer: J.M Specialty Parts
San Diego, CA

$1050 “large phantom”
$780 “small phantom”

ACR (large) Phantom Analysis

#1) Slice thickness and position, geometric accuracy, high contrast resolution
#5) Geometric accuracy
#7) Percent image uniformity, ghosting
#8-11) Low contrast object detectability, and slice position (in #11)

ACR (small) Phantom Analysis

Sag localizer) Geometric accuracy
#1) Slice thickness and position, geometric accuracy, high contrast resolution
#3) Geometric accuracy
#5) PIU, ghosting
#6-7) LCD

Slide courtesy of E.F. Jackson, PhD

From “Phantom Test Guidance for Small MRI Phantom for the ACR MRI Accreditation Program”
Phantom position

- Scan 3-plane localizer prior to acquiring sagittal series to optimize phantom position
 - Axial rotation
 - Sagittal tilt
 - Coronal alignment
- Poor phantom positioning may impact:
 - Low contrast detectability (LCD)
 - Uniformity (PIU)

Large phantom - Geometric Accuracy

Slice 1 Slice 5
Criteria: 190 ± 2 mm Criteria: 148 ± 2 mm

Small phantom - Geometric Accuracy

Slice 1 Slice 3 Sag Loc
Criteria: 100 ± 2 mm

Large phantom - Slice Position

Slice 1 Slice 11
Criteria: <5mm

Small phantom - Slice Position

Slice 1
Criteria: <5mm

Large phantom – Low Contrast Detectability (LCD)

Slice 8: 1.4%
Slice 9: 2.5%
Slice 10: 3.6%
Slice 11: 5.1%
Criteria:
≤1.5T - at least 9 spokes (total)
3T - at least 37 spokes (total)
Small phantom – Low Contrast Detectability (LCD)

Slice 6: 3.6%
Slice 7: 5.1%

Criteria:
- at least 9 spokes (total)

Large phantom - Slice Thickness

Two 10:1 ramps compensate for phantom tilt

\[0.2 \times \frac{\text{top} - \text{bottom}}{\text{top} + \text{bottom}} \]

Average slice thickness must be \(5.0 \pm 0.7\) mm.

Small phantom - Slice Thickness

Two 10:1 ramps

\[0.2 \times \frac{\text{top} - \text{bottom}}{\text{top} + \text{bottom}} \]

Average slice thickness must be \(5.0 \pm 0.7\) mm.

Large phantom – High Contrast Spatial Resolution

Must be able to resolve 1.0 mm holes vertically and horizontally.

- 25 cm FOV, 256 x 256 matrix
- Pixels: 0.98 mm x 0.98 mm

Small phantom – High Contrast Spatial Resolution

Must be able to resolve 0.8 mm holes vertically and horizontally.

- 12 cm FOV, 192 x 152 matrix
- Pixels: 0.63 mm x 0.79 mm

Both phantoms - Percent Image Uniformity

PIU = \(1 - \frac{\text{max} - \text{min}}{\text{max} + \text{min}}\) \times 100

1.5T: Criteria: PIU ≥ 87.5%
3.0T: Criteria: PIU ≥ 82 %

Small phantom

Large phantom

Slice 7

Small phantom

Large phantom

Slice Thickness
Both phantoms -
Ghosting measurement

\[
\text{Ghost ratio} = \frac{\left| \text{(top+btm)} - \text{(left+right)} \right|}{2 \cdot \text{large ROI}}
\]

Criteria: \(\leq 0.025 \)

Phantom images

- Which phantom?
- Which coil?
- Which images?

Phantom Images – one set submitted for each scanner using one phantom (large or small)

1. ACR series: Sagittal T1
2. ACR Axial T1 SE
3. ACR Axial PD/T2 dual echo SE (T2 for MSK)
4. Site T1 series
 - T1W brain protocol - large phantom OR
 - T1W knee protocol – small phantom
5. Site T2 series
 - T2W brain protocol – large phantom OR
 - T2W knee protocol – small phantom

Phantom images

Whole body systems that have both a head coil and knee coil
- Large phantom images acquired in head coil
Dedicated systems (e.g. large bore MSK-only or cardiac-only)
- May not have a head coil
- Call the ACR for guidance

Small bore orthopedic systems
- Small phantom images acquired in knee coil

Phantom images

Impact on ACR phantom image quality
- Field strength
- Type of head coil
- Small bore systems

Field strength, \(B_0 \)

Higher field strength
- Advantages:
 - higher SNR (improved conspicuity)
 - SNR can be traded for
 - faster scan time (decrease averages)
 - increased resolution (larger matrix, thinner slices)
Low field systems

Lower SNR
- Challenge: to pass low contrast detection test
- Clinical protocols modified to increase SNR
 - Increase number of averages (impacts scan time)
 - Narrow bandwidth (impacts chemical shift, geometric distortion)
 - Use of higher SNR pulse sequences
- Phantom alignment and slice position in LCD sections is important

SNR vs. Field strength

1.5T 0.2T
Slice 11 – Low Contrast Detection section of large ACR MRI phantom (ACR T1 series)

3 Tesla systems – Dielectric effect

1.5T 3T
Impacts Uniformity measurement

SNR vs. Field strength

3.0T 1.5T
Slice 8 – Low Contrast Detection section of large ACR MRI phantom (8 channel array, ACR T1 series, SCIC)

Phased array coils

- Multiple small coil elements, independent receiver channels
- Higher SNR of small elements
- Multiple elements provide greater anatomical coverage
- Enable parallel imaging

Phased array coils

- Small coil elements improve SNR
- Multiple elements for anatomical coverage

MRI Devices 8 channel HR Brain array:
Images acquired from individual channels

Decreased uniformity:
Reduced RF penetration with increasing frequency
Apply Surface Coil Intensity Correction
8 channel head coils

“If your facility uses an eight channel head coil, it is necessary to perform all phantom scans using the surface coil intensity correction option.”

Uniformity vs. Coil

1.5T Quad head coil 1.5T 8 channel array 1.5T 8 channel array SCIC applied

ACR T1 series, Slice 7 – Uniform section of large ACR MRI phantom

Dedicated MRI systems: small bore orthopedic

Magnet:
- low field to 1.5T
- Resistive systems
- Actively shielded superconductors

Gradient performance
- Low to high performance
- Up to 70 mT/m, 200T/m/sec

Range of bore and RF coil sizes
- ~145-180 mm

http://www.onimri.com/

Dedicated MRI systems: small bore orthopedic

- Important to position phantom at center of bore
- Off-isocenter: potential for distortion due to gradient non-linearity and field inhomogeneity - could impact geometric accuracy measurements

Summary

- Program allows facilities with dedicated or specialty MSK magnets to become accredited according to their clinical practice.
- MRI Accreditation is now available for a wide range of MRI system configurations and clinical uses.
- Multiple system configurations provide unique challenges for the medical physicist, who plays an important role in the accreditation process.