AbstractID: 13596 Title: Central electrode correction factor, Pcel, for steel and wire electrodes

Purpose: Beam quality conversion factors, k_Q , are required for use with the TG-51 clinical dosimetry protocol. TG-51 values of k_Q are calculated using the ratio of several correction factors including the central electrode correction factor, P_{cel} , which is known for ion chambers with aluminum or graphite electrodes. This study calculates P_{cel} values in photon beams for more recent chambers that use electrodes composed of high-Z materials. **Method and Materials:** Monte Carlo simulations using the EGSnrc user-code egs_chamber are used to calculate the absorbed dose to the gas in an ion chamber with and without the central electrode. The ratio of the two doses gives P_{cel} . Manufacturers' blueprints and user's manuals are used to model the ion chambers. The source is modeled as a collimated point source from tabulated spectra for Cobalt-60 and linear accelerator photon beams. Spectra used include some linear accelerators without flattening filters to investigate the value of P_{cel} in 'soft' beams. **Results:** For small volume ion chambers with electrodes composed of high-Z materials the central electrode effect is unlike that of aluminum electrodes in standard Farmer-like chambers. This results in k_Q factors which are up to 1.5% larger for clinical beams than those used in current dosimetry protocols. For standard Farmer-like chambers, P_{cel} does not depend on the degree of filtration in the beam but for chambers with high-Z electrodes P_{cel} is different by up to 1.5% in lightly-filtered beams compared to values in typical clinical beams. **Conclusion:** Calculations of the central electrode effects (1 to 2.5%) than those with aluminum electrodes (<0.8%). It would be best to avoid such high-Z electrode materials.