AbstractID: 13881 Title: Experimental validation of a scintillating fiber detector for realtime quality control of MLC-driven radiotherapy treatment

Purpose: To validate a novel type of fluence monitoring detector based on the optical attenuation of scintillating fibers to be used for on-line quality control of radiotherapy treatments. Method and Materials: 20 long scintillating fibers were aligned along the direction of motion of each of the 20 central pairs of leaves on a Varian Clinac iX MLC and coupled on both ends to a clear optical fiber to enable light collection. Following the theoretical model of scintillation collection based on optical attenuation previously developed, the central position (x_{c}) and integral fluence (Φ_{int}) of various radiation fields were calculated and compared to the expected values as deduced from a radiographic film and a planar dose (PD) calculated from the treatment software. Results: The difference between the measured and calculated x_{c} was within 2 mm for more than 92% of the fields with a mean around 0.8 mm . Of all these deviations, 93% can be explained by statistical variations (Poisson statistics). For $\Phi_{\text {int }}$, the difference was less than 2% in 89% of the fields, with a mean around 0.9%. Although most of these discrepancies cannot be explained by statistical variations alone, they can be imputed on a small miss-alignment of the fiber with the collimator leaves and small systematic errors with film processing and planar dose calculation. Nevertheless, any absolute displacement of MLC leaf pair of more than 3 mm or any fluence variation over 3% can be detected by our system. Conclusion: This work validates the principle that a detector based on the optical attenuation of scintillating fibers can achieve real-time quality control of a radiotherapy treatment with good precision. At the moment, the detection threshold for $\Phi_{\text {int }}$ is limited by the robustness of the fiber positioning system. This threshold is expected to fall below 2% with a more robust design.

