C. Ross Schmidtlein Department of Medical Physics Nuclear Imaging Physics Group Memorial Sloan-Kettering Cancer Center

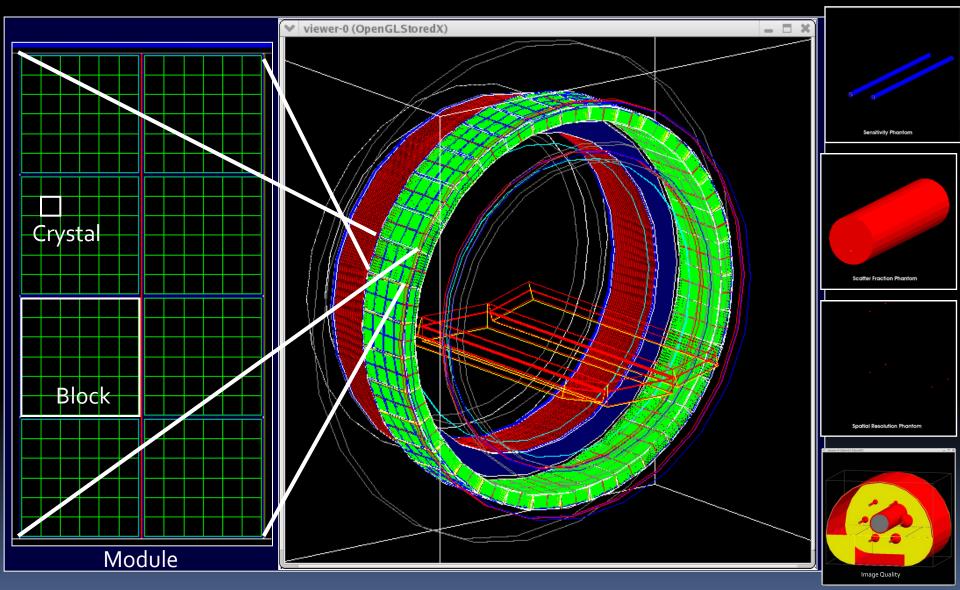
BASIC PET IMAGING PHYSICS: ILLUSTRATED VIA MONTE CARLO

Overview:

- Imaging system: camera overview
- Detection process
- Data representations
- Data corrections
- Image reconstruction

GATE GE Discovery DST

NEMA Phantoms



Images produced by the GATE code.

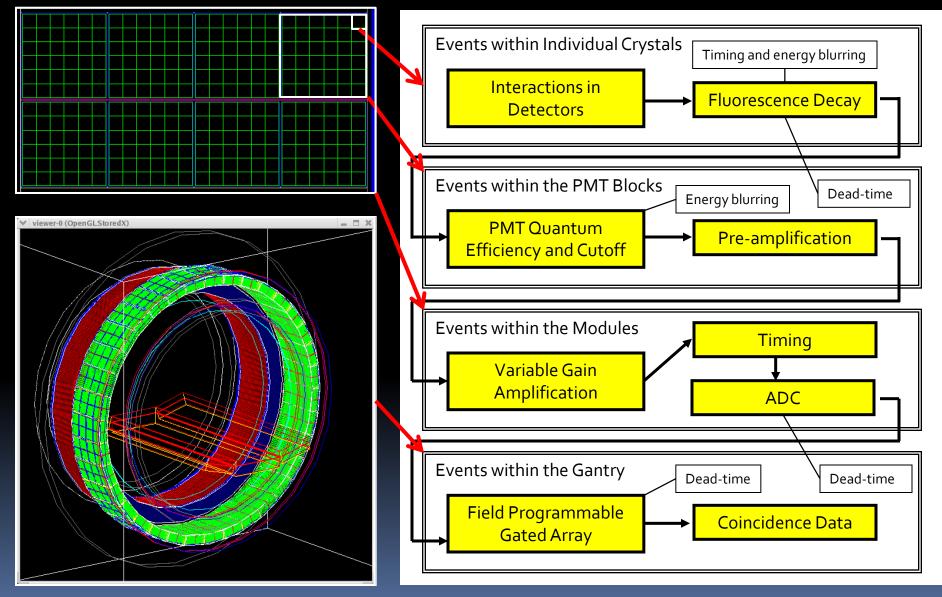
Signal path

- Photon detector interactions
- Scintillation
- Signal amplification
 - PMT's, CCD's
 - Pre-amplification
- Crystal map
- MCA's
 - Energy window

-----> Scatter counts

Block effect

Signal Processing



Description of the signal processing flow chart provided by A. Ganin GE Health Care.

GE Discovery LS / ST PET Cameras

18/24 Rings

- 35/47 Reconstructed Slices
- 672/420 BGO Crystals per Ring
- 12,096/10,080 Crystals Total
- Ring Diameter 92.7/88.1 cm
- Axial Field of View 15.2/15.2 cm
- Crystal Size
 - DLS: 4 x 8 x 30 mm³
 - DST: 6.3 x 6.3 x 30 mm³
- Energy Window 375 to 650 keV
- Coincidence Window 12.5/11.7 ns

GE Discovery LS

GE Discovery ST

Positron tracers

Confounding factors

				Ducant
Isotope	Branching	Half life	Mean Energy	Prompt
	Ratio		(keV)	Gammas
	(%)			
¹¹ C	99.8	20.38 min.	385.5	-
¹³ N	99.8	9.965 min.	491.8	
¹⁵ O	99.9	2.037 min	735.3	-
¹⁸ F	96.7	109.77 min.	249.8	-
²² Na	89.8+	2.602 years	215.4	/1275(99.9%)
⁶⁴ Cu	17.9	12.701 hrs.	278.1	1346(0.49%)
⁶⁸ Ga	87.9/1.08	68.0 min.	835.8/352.6	1077(3.30%)+
⁶⁸ Ge -> ⁶⁸ Ga		271 days		-
⁸² Rb	83.3/11.6+	1.3 min.	1523/1157	776.5(13.4%)+
⁸⁶ Y	32.3+	14.74 hrs.	213.1	many
¹²⁴	11.2/11.2+	4.18 days	685.9/973.6	602.7(61.1%)
				722.8(10.1%)
				1691(10.6%)+
Many Others:				
^{75,76} Br,	% of d	ecays		
^{93,94,94m} Tc,	that cont	ibute to	Determin	es dose
⁸⁹ Zr,	image fo	rmation		

Annihilation detection

- Positron Range
 - Dependent on decay energy spectrum
- Positron non-collinearity
 - o.47 deg. FWHM
 - Related to positronium KE
 - (~ 8.6 eV)
- Detector size
 - d/2, for discrete detectors
- Block effects

Detector Size

$$FWHM = \sqrt{(d/2)^2 + b^2 + r^2 + (0.0022D)^2}$$

Fffect

Positron Range

0.05 F18 1124 **Laction of Positrons** 0.03 0.02 0.01 O15 C11 **Rb82** 10 15 5 **Positron Range (mm) FWHM** non-collinearity 5 4 3 2 1 0

Non-collinearity

Coincidence detection

Prompt coincidences

- Trues
- Scatters
- Cascades
- Delayed coincidences
 - Randoms

Singles

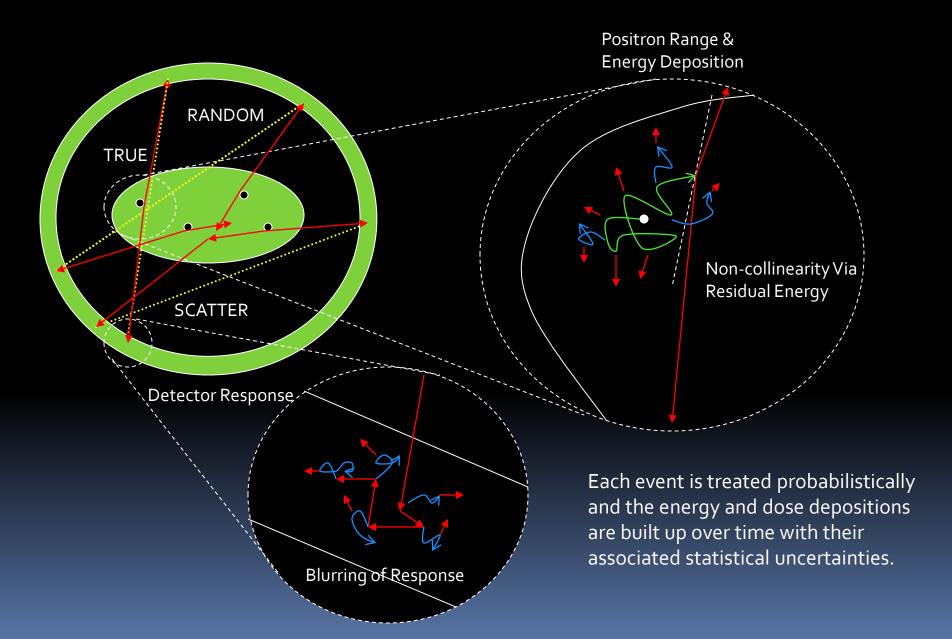
- Measures
 - Scatter Fraction (SF)
 - Noise Equivalent Count Rate (NECR)

 $SF = -\frac{S}{-}$

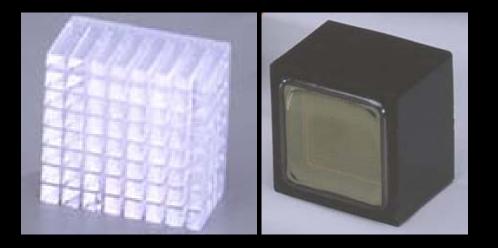
T + S

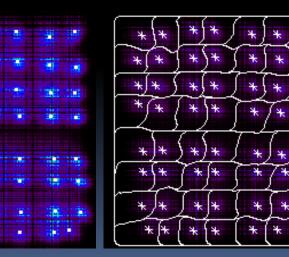
$$NECR = \frac{T^2}{T + S + R + C}$$

So how do these effects come together?



Signal in the blocks





₩

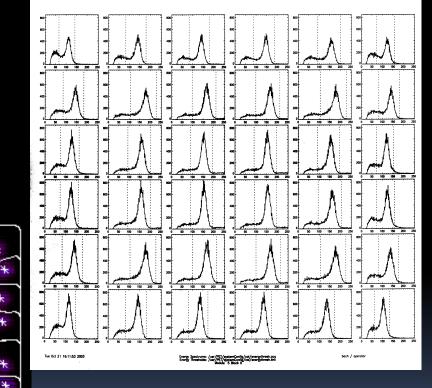
*

*

¥ ¥

×

*



Raw data structures

• Sinogram binning: r, φ

3D Data formats

Michelograms

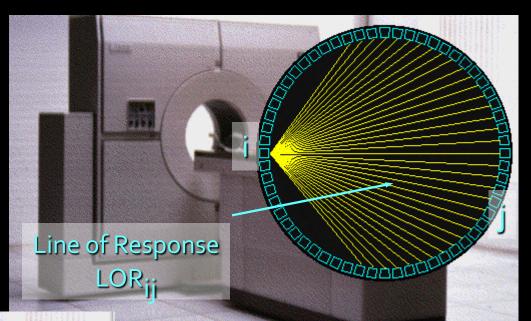
Projection data

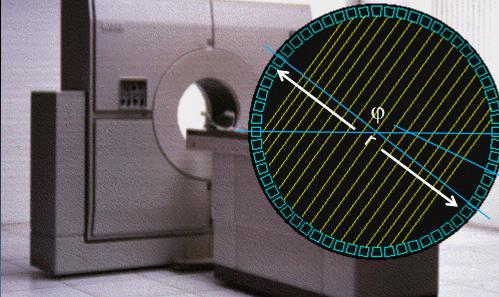
Coincidence binning

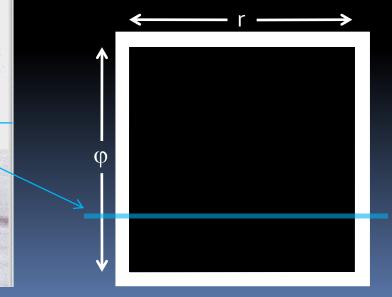
<u>List-Mode Raw Data</u>

List of # of events for each detector-pair LOR

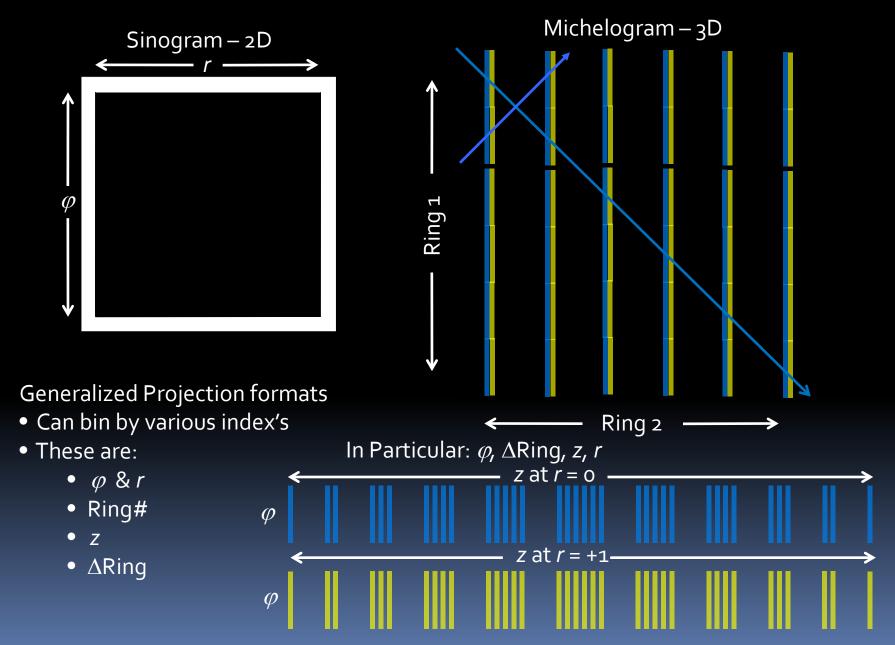
<u>Re-binning</u> Sort raw data into projection images







Data representation



PET Basics: data correction

- Normalization
- Attenuation correction
- Scatter correction
- Random correction
- Cascade correction
- Other corrections: _____
- Sampling correction
- Recovery correction
- Dead time correction
- Decay correction

Normalization

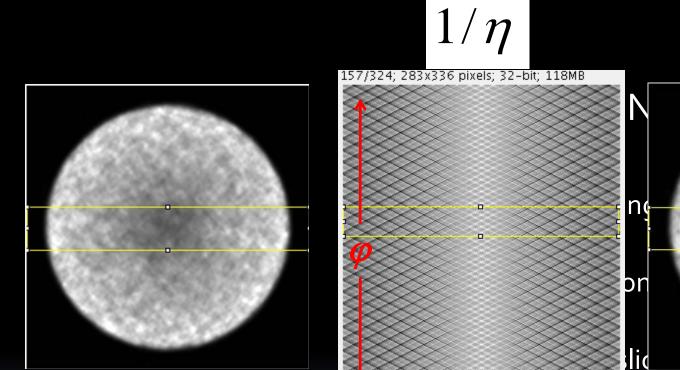
- Components accounted for in normalization
 Individual detector efficiency: *E*<sub>det₁,ring₁,det₂,ring₂
 </sub>
 - Block profile factors: $B_{det_1, ring_1, det_2, ring_2}$
 - Geometric factors: $G_{det_1, ring_1, det_2, ring_2}$
 - Time-window alignment factor:
 - Structural misalignment factor:

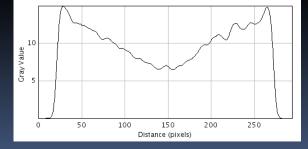
$$\eta_{1,2}^{true} = \varepsilon_{1,2} B_{1,2} G_{1,2} T_{1,2} M_{1,2}$$
$$\eta_{1,2}^{scatter} = \varepsilon_{1,2} B_{1,2} T_{1,2}$$

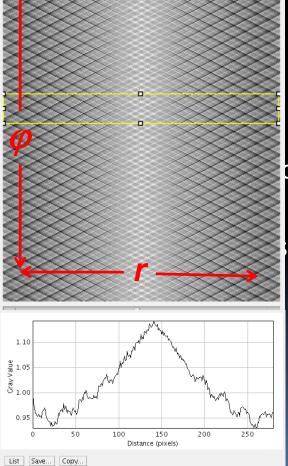
M_{det1},ring1,det2,ring2

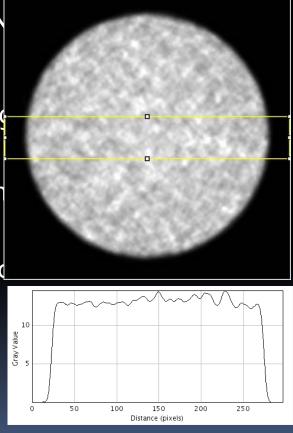
 $T_{det_1, ring_1, det_2, ring_2}$

Normalization ex:





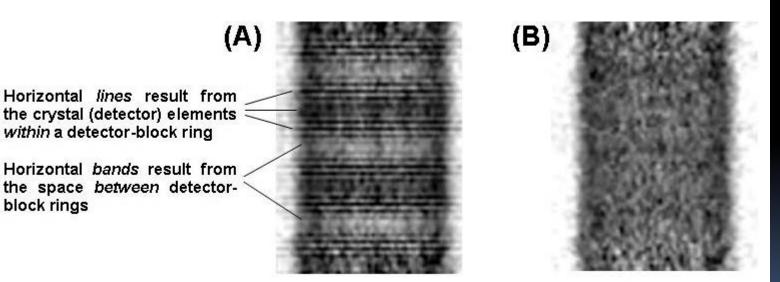




Normalization ex:

Uniformity ("Flood"/Sensitivity) Correction

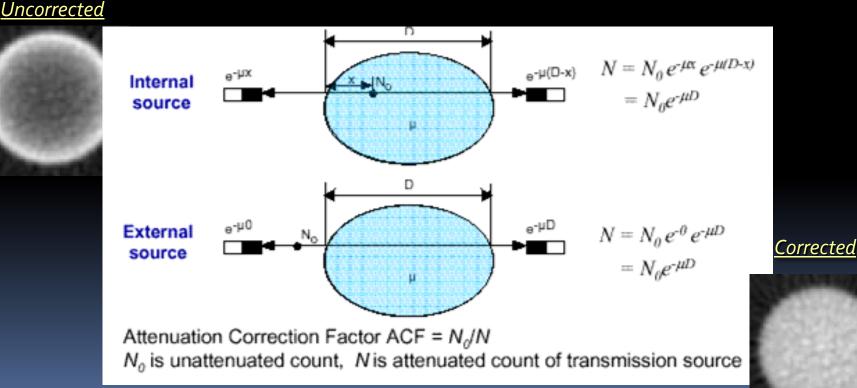
Without Normalization With Normalization



Coronal images of an F18-filled cylinder

Attenuation correction

 Coincidence detection depends on the detection of two photons



Generating the correction

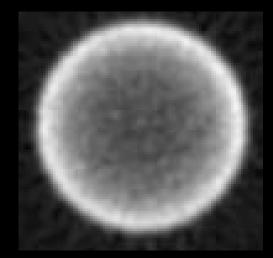
- Transmission scan
- Segmentation
- CT scan
 - Conversion of Hounsfield units (~140-kVp attenuation coefficients) to 511-keV attenuation coefficients

Issues

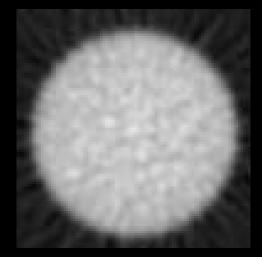
- Motion inter/intra scan motion
 - Gated acquisitions: cardiac/respiratory
- CT artifacts
 - Data truncation
 - High-Z objects: contrast/implants

Attenuation correction ex:

<u>Uncorrected</u>

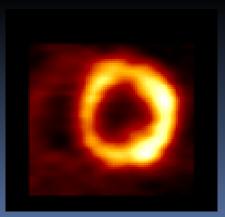


<u>Corrected</u>

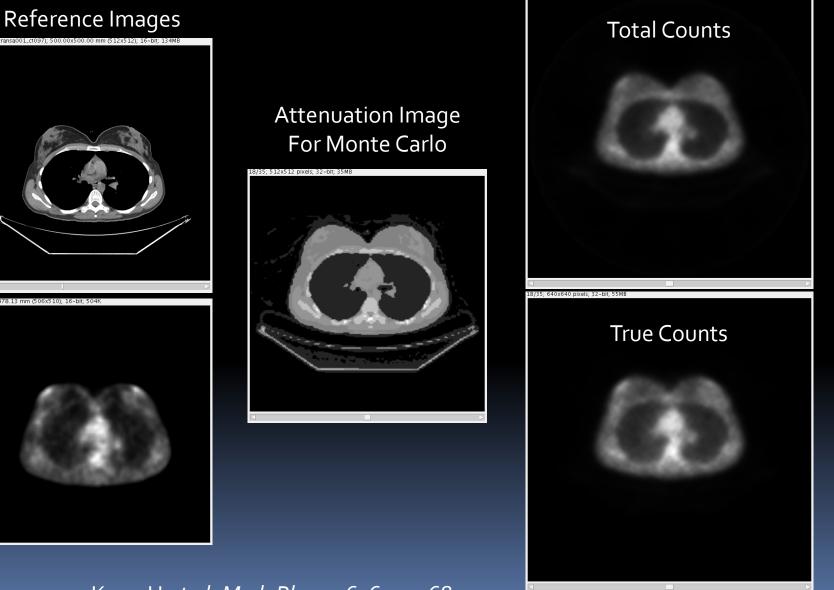


Rb82 Myocardial Perfusion Study Short-axis image of left ventricle



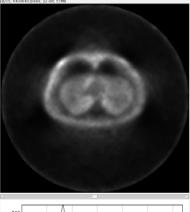


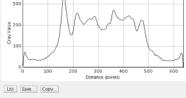
Scatter and random effects

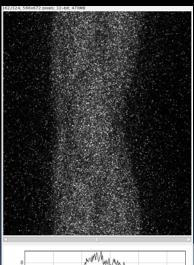


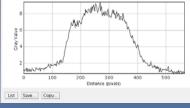
Kang H et al, Med. Phys. 36, 6,p 2468, 2009

Total Counts

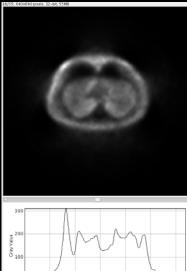






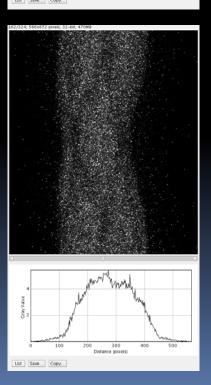


True Counts



400

0 100 200 300 4 Distance (pixels)

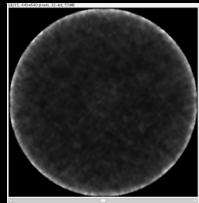


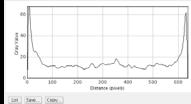
Scatter Counts





Random Counts





300

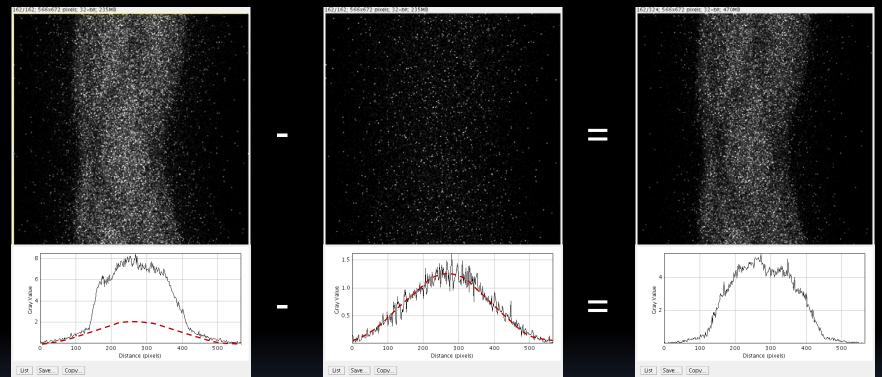
List Save... Copy...

Scatter correction

- Multiple approaches:
 - Fitting scatter tails
 - Multiple energy windows
 - Convolution

Scatter simulation

Scatter correction: Tail Fit:



Convolution:

 $T^{k+1} = [P - \tilde{R}] - SF(T^k \otimes K_{scatter})$

Random Corrections

Real time subtraction

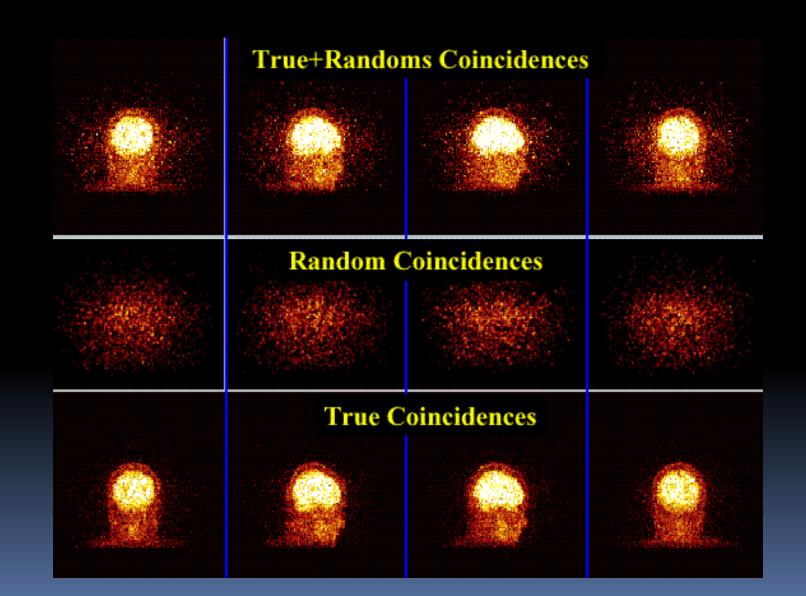
- Doubles the noise from the randoms
- Can result in negative counts
- Delayed event subtraction
 - Requires a second coincidence window (delayed)
 - Adds dead-time
 - Smooth the delayed projection data: little added noise

Randoms by singles

- May not account for coincidence dead-time
- Smooth the projection data: little added noise

$$r_{i,j} = 2\tau s_i s_j$$

Random Correction ex:



Cascade Corrections

- Is scatter like in that:
 - It is correlated in time with the annihilation photons
- Is random like in that:
 - It contains very little spatial information
- Its correction is:
 - Performed in projection space
 - Fit the distribution shape: Convolve the corrected data with the cascade coincidence kernel
 - Scale the fit: Tail fit the estimate to get a scaling factor
 - Correct the data:
 Subtract the scaled fit from the corrected data

$$P_{cc} = \left(M \cdot P_{std} \right) \otimes K_{cc}$$

$$P_{corr} = \left[\left(P_{std} \cdot Ac^{-1} \right) - \alpha P_{cc} \right] \cdot Ac$$

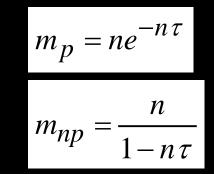
Other corrections

Sampling corrections:

- Non uniform projection spacing
 - Arc correction by interpolating the data
 - Accounted for in the projection model
- Dead-time corrections
 - Paralyzable / Non- paralyzable:
 - Block polling to estimate "live"-time

- Dilution of a known activity to generate a correction factor
- Decay corrections

Scales the counts to the start of the scan



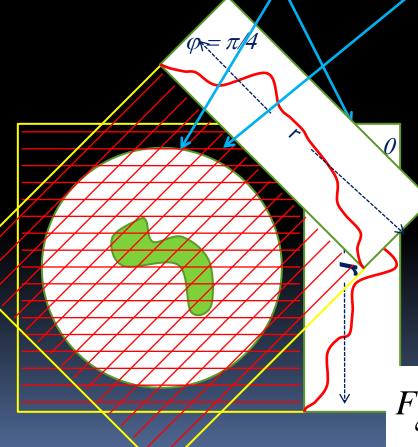
Basic Image Reconstruction

Forward and Back-Projection

- The data represents a forward-projection from the object with the camera as the projector
- The trick is to generate a back-projection
- But the devil's in the details...
 - The fidelity of the projector pair is important
 - The data is count limited
 - The data is contaminated with noise
- Reconstructing the Image
 - Deterministic methods (FBP)
 - Statistical methods (MLEM, OSEM, ...)

The Projection Slice Theorem

$$p(r,\varphi) = Rf(r,\varphi) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \delta(r - x\cos\varphi - y\sin\varphi) dxdy$$



$$F_r p(\rho, \varphi) = \int_{-\infty}^{\infty} e^{-2\pi i \rho r} Rf(r, \varphi) dr$$

$$F_{x,y}f(\xi_1,\xi_2) = F_r p(\rho,\varphi)$$

$$F_{\xi_1,\xi_2}^{-1}\left(F_{x,y}f(\xi_1,\xi_2)\right)(x,y) = f(x,y)$$

`

.

Filtered Back-Projection

$$f(x, y) = F_{\xi_1, \xi_1}^{-1} \left[Q \upsilon_{\rho} F_r p(\rho, \varphi) \right] (x, y) \qquad \xi_1 = \rho \cos \varphi, \quad \xi_2 = \rho \sin \varphi,$$

- Intrinsic limitations
 - Sampling:

The data is sampled within discrete detectors and is therefore limited by the Nyquist frequency, $v_N = 1/2\Delta x$.

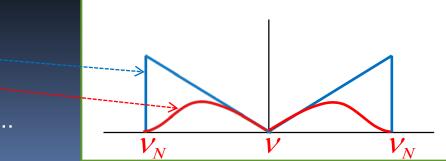
Noise:

The signal's power spectrum drops faster than the noise's power spectrum.

Modeling:

Cannot account for system model information or prior knowledge of the object.

- Filter choices
 - Ramp: --
 - Hanning:
 - Many more...



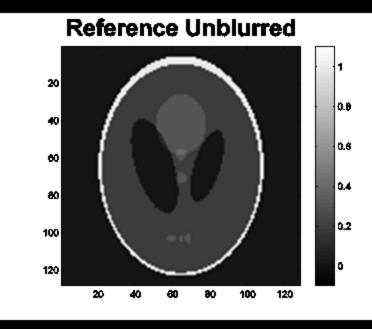
FBP example:

MATLAB code:

- IM_REF = phantom(128);
 Shepp-Logan Phantom
- phi = 0:(180/128):(180-1/(128+1));
- [IM_FW,xp] = radon(IM_REF,phi);
 - Forward projection
- Noise_1 = poissrnd(IM_FW);
 Noisy Poisson Realization
- IM_BK_filtered = iradon(IM_FW,phi,'Shepp-Logan',1,128);
 Reconstruction of un-noised phantom
- IM_BK_Noise = iradon(Noise_1,phi,'Shepp-Logan',1,128);
 Reconstruction of noised phantom

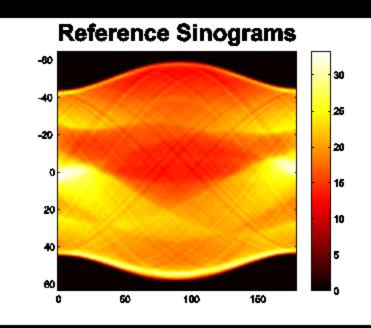
FBP example: MATLAB code:

- IM_REF = phantom(128);
 Shepp-Logan Phantom
- phi = 0:(180/128):(180-1/(128+1));
- [IM_FW,xp] = radon(IM_REF,phi);
 Forward projection
- Noise_1 = poissrnd(IM_FW);
 Noisy Poisson Realization
- IM_BK_filtered = iradon(IM_FW,phi,'Shepp-Logan',1,128);
 Reconstruction of un-noised phantom
- IM_BK_Noise = iradon(Noise_1,phi,'Shepp-Logan',1,128);
 Reconstruction of noised phantom



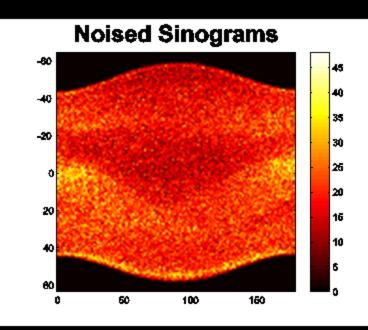
FBP example: MATLAB code:

- IM_REF = phantom(128);
 Shepp-Logan Phantom
- phi = 0:(180/128):(180-1/(128+1));
- [IM_FW,xp] = radon(IM_REF,phi);
 Forward projection
- Noise_1 = poissrnd(IM_FW);
 Noisy Poisson Realization
- IM_BK_filtered = iradon(IM_FW,phi,'Shepp-Logan',1,128);
 Reconstruction of un-noised phantom
- IM_BK_Noise = iradon(Noise_1,phi,'Shepp-Logan',1,128);
 Reconstruction of noised phantom



FBP example: MATLAB code:

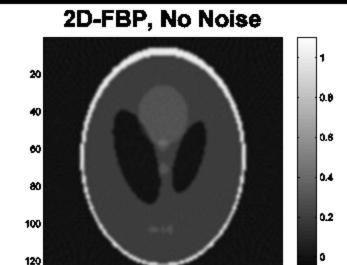
- IM_REF = phantom(128);
 Shepp-Logan Phantom
- phi = 0:(180/128):(180-1/(128+1));
- [IM_FW,xp] = radon(IM_REF,phi);
 Forward projection
- Noise_1 = poissrnd(IM_FW);
 Noisy Poisson Realization
- IM_BK_filtered = iradon(IM_FW,phi,'Shepp-Logan',1,128);
 Reconstruction of un-noised phantom
- IM_BK_Noise = iradon(Noise_1,phi,'Shepp-Logan',1,128);
 Reconstruction of noised phantom



FBP example: MATLAB code:

- IM_REF = phantom(128);
 Shepp-Logan Phantom
- phi = 0:(180/128):(180-1/(128+1));
- [IM_FW,xp] = radon(IM_REF,phi);
 Forward projection
- Noise_1 = poissrnd(IM_FW);
 Noisy Poisson Realization
- IM_BK_filtered = iradon(IM_FW,phi,'Shepp-Logan',1,128);
 Reconstruction of un-noised phantom

IM_BK_Noise = iradon(Noise_1,phi,'Shepp-Logan',1,128);
 Reconstruction of noised phantom

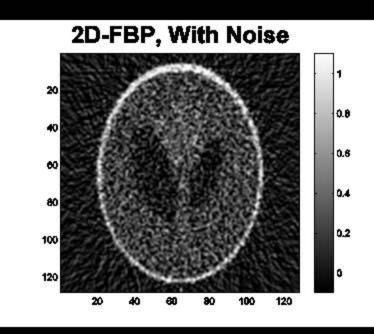


100

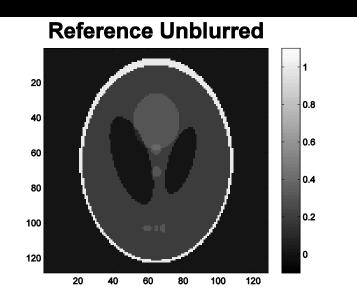
120

FBP example: MATLAB code:

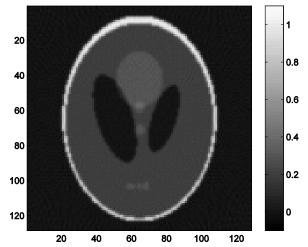
- IM_REF = phantom(128);
 Shepp-Logan Phantom
- phi = 0:(180/128):(180-1/(128+1));
- [IM_FW,xp] = radon(IM_REF,phi);
 Forward projection
- Noise_1 = poissrnd(IM_FW);
 Noisy Poisson Realization
- IM_BK_filtered = iradon(IM_FW,phi,'Shepp-Logan',1,128);
 Reconstruction of un-noised phantom
- IM_BK_Noise = iradon(Noise_1,phi,'Shepp-Logan',1,128);
 Reconstruction of noised phantom



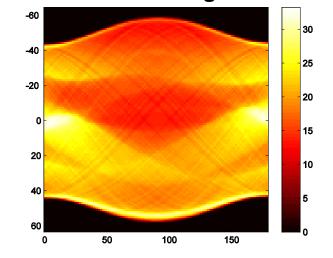
FBP example:

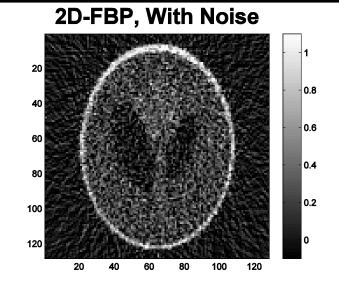


2D-FBP, No Noise



Reference Sinograms





Maximum Likelihood Expectation Maximization

Emission from object, <*f*_n >, to detection, < *g*_m>

$$\langle g_m \rangle = \sum_{n=1}^N H_{mn} \langle f_n \rangle = H[\langle f_n \rangle]$$

Poisson probability that an event, g_m , is drawn from < g_m >

$$p(g_m | \langle f \rangle) = \frac{e^{-\langle g_m \rangle} \langle g_m \rangle^{g_m}}{g_m!}$$

Maximizing the log-likelihood of the detections, g, on object, <f>

$$\frac{\partial \log \left[p\left(g \mid \left\langle f \right\rangle \right) \right]}{\partial f} = H^T \left[\frac{g}{H[f]} - 1 \right] = 0$$

Maximum Likelihood Expectation Maximization

$$f^{k+1} = \frac{f^k}{s} H^T \left[\frac{g}{H[f^k]} \right], \quad s = H^T[1]$$

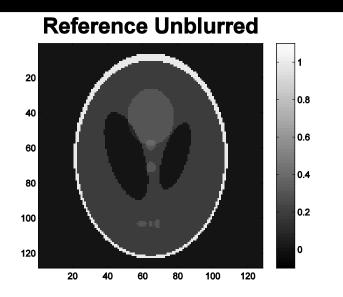
ML-EM example:

MATLAB code:

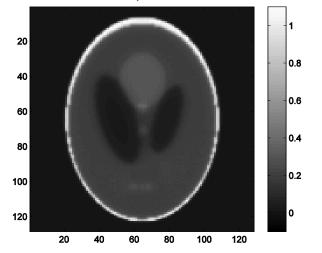
- $IM_REF = phantom(128);$ phi = 0:(180/128):(180-1/(128+1)); [IM_FW,xp] = radon(IM_REF,phi); G = poissrnd(IM_FW);
- s = radon(ones(128,128),phi);
- F(:,:) = ones(128, 128);
- for loop = 1:ITER
 - [FW,xp] = radon(F,phi);
 - F = F ./s.*iradon(G/FW,phi,'None',128);
- end

$$f^{k+1} = \frac{f^k}{s} H^T \left[\frac{g}{H[f^k]} \right]$$

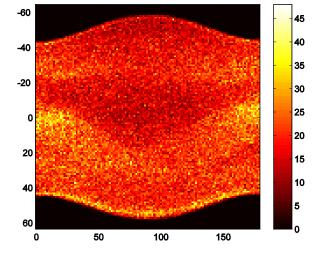
ML-EM example:



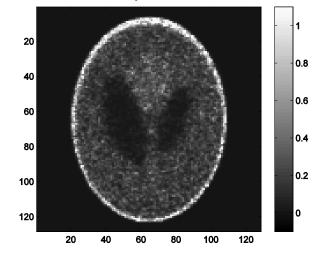
2D-MLEM, No Noise



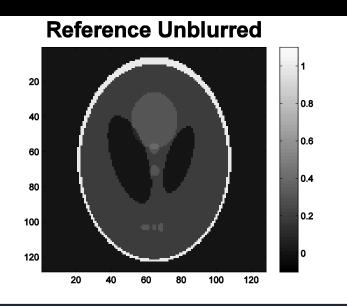
Noised Sinograms



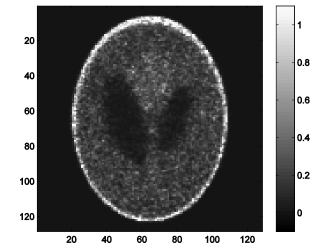
2D-MLEM, With Noise



Comparison of FBP MLEM:



2D-FBP, With Noise 0.8 0.6 0.4 0.2



Noise Properties of Image Reconstruction

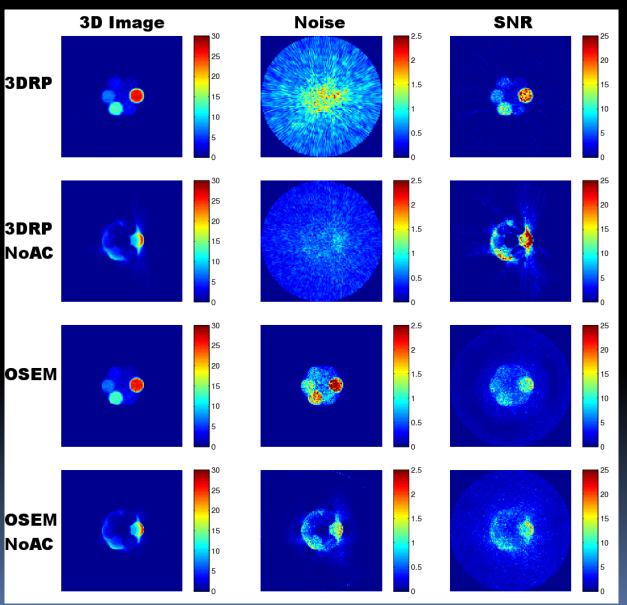
FBP

- Scales linearly with counts,
- Before attenuation correction uniform
- After attenuation correction azimuthally invariant

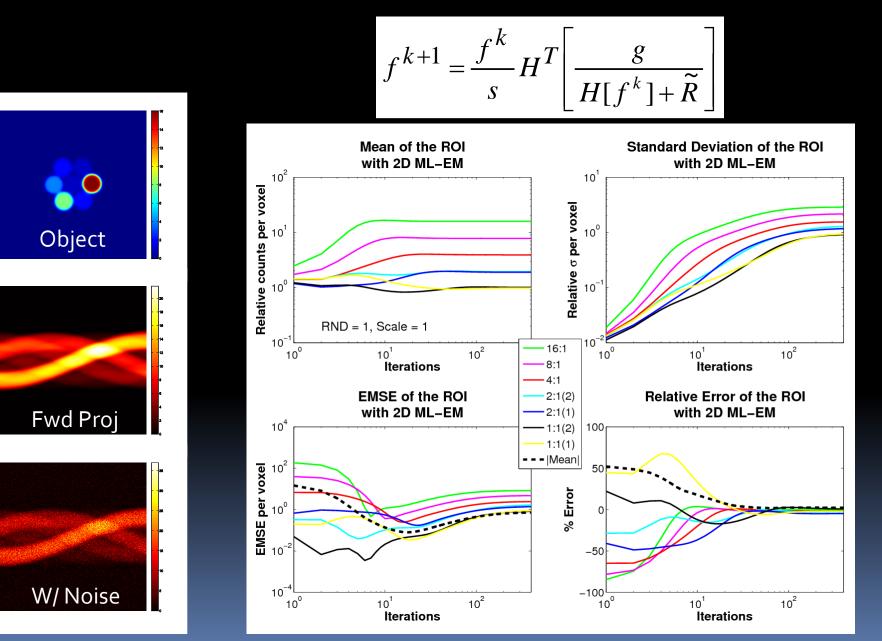
OSEM

- Does not scale linearly with counts
- More proportional to image intensity
- Better SNR for low uptake regions
- Worse SNR for high uptake regions

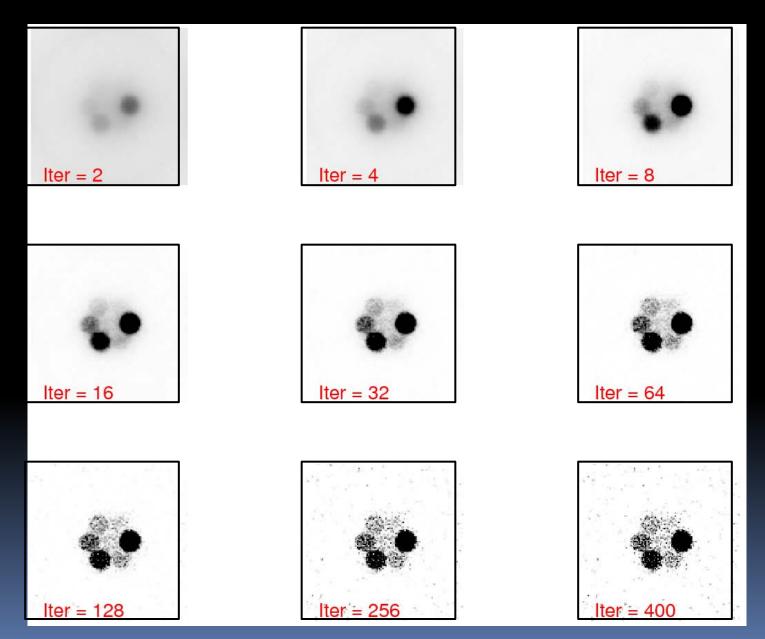
Noise images:



Noise as a function of iteration:



Noise as a function of iteration:



Acknowledgments:

Nuclear Imaging Physics John Humm **Brad Beattie** Pat Zanzonico Keith Pentlow **Rachel Bartlett** Jazmin Schwartz Sadek Nehmeh

Radiation Therapy Physics Hyejoo Kang Assen Kirov

Nuclear Medicine Tim Akhurst Heiko Schoder Jean Aime Olivia Squire Rashid Ghani

Cascade Corrections

- Beattie's method:
 - Performed in projection space
 - Can be extended to be performed in the reconstruction loop
 - Procedure:
 - 1. Correct the projection data
 - 2. Convolve the corrected data inside the object with a cascade kernel
 - Tail fit the estimate with the non-attenuation corrected projection data outside the object to get a scaling factor
 Correct the data

$$P_{std} = P \cdot C(S, R, Ac, DT, Norm, ...)$$

$$P_{cc} = \left(M \cdot P_{std} \right) \otimes K_{cc}$$

$$\alpha = \frac{M^{-1} \cdot \left(P_{std} \cdot Ac^{-1}\right)}{M^{-1} \cdot P_{cc}}$$

$$P_{corr} = \left[\left(P_{std} \cdot Ac^{-1} \right) - \alpha P_{cc} \right] \cdot Ac$$

The Projection Slice Theorem

$$p(r,\varphi) = Rf(r,\varphi) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)\delta(r - x\cos\varphi - y\sin\varphi)dxdy$$

$$F_r p(\rho,\varphi) = \int_{-\infty}^{\infty} e^{-2\pi i\rho r} Rf(r,\varphi)dr$$

$$= \int_{-\infty}^{\infty} e^{-2\pi i\rho r} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)\delta(r - x\cos\varphi - y\sin\varphi)dxdydr$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i\rho r} \delta(r - x\cos\varphi - y\sin\varphi)drdydr$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i\rho r} \delta(r - x\cos\varphi - y\sin\varphi)drdydr$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i\rho r} \delta(r - x\cos\varphi - y\sin\varphi)drdydr$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i\rho r} \delta(r - x\cos\varphi - y\sin\varphi)drdydr$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i\rho r} \delta(r - x\cos\varphi - y\sin\varphi)drdydr$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i\rho r} \delta(r - x\cos\varphi - y\sin\varphi)drdydr$$

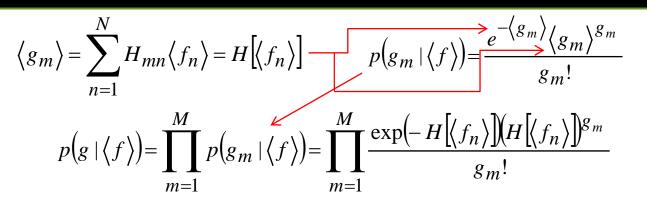
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i\rho r} \delta(r - x\cos\varphi - y\sin\varphi)drdydr$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i\rho r} \delta(r - x\cos\varphi - y\sin\varphi)drdydr$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i\rho r} \delta(r - x\cos\varphi - y\sin\varphi)drdydr$$

$$= \int_{-\infty}^{\infty} \int_$$

Maximum Likelihood Expectation Maximization

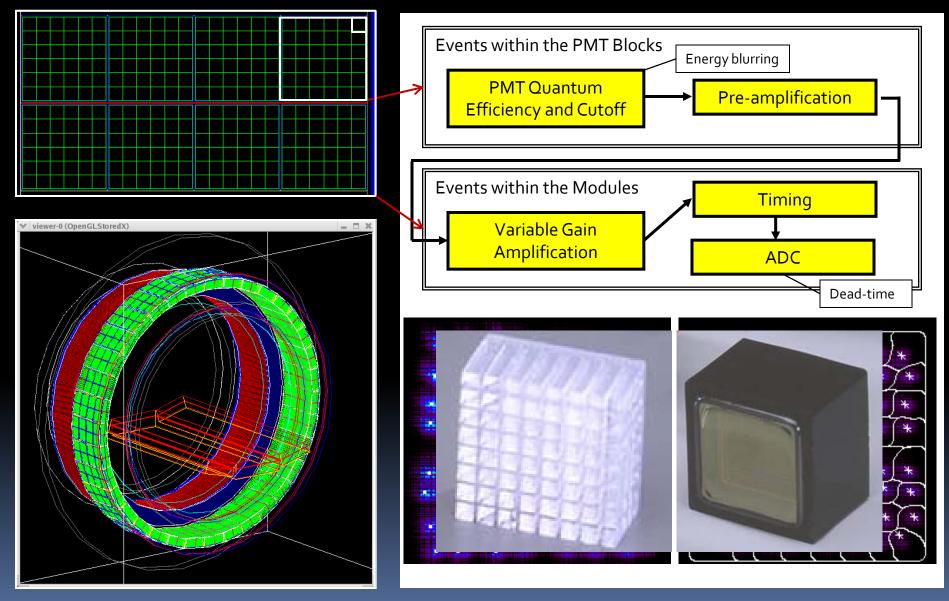


$$\log[p(g | \langle f \rangle)] = \sum_{m=1}^{M} \log[p(g_m | \langle f \rangle)] \qquad \hat{f} = \arg\max_{f} (\log[p(g | f)])$$

$$\frac{\partial \log \left[p\left(g \mid \left\langle f \right\rangle \right) \right]}{\partial f} = H^T \left[\frac{g}{H[f]} - 1 \right] = 0 \longrightarrow f H^T \left[\frac{g}{H[f]} \right] - f H^T \left[1 \right] = 0$$

$$f = \frac{f}{H^{T}[1]} H^{T} \left\lfloor \frac{g}{H[f]} \right\rfloor, \quad s = H^{T}[1] \longrightarrow f^{k+1} = \frac{f^{k}}{s} H^{T} \left\lfloor \frac{g}{H[f^{k}]} \right\rfloor$$

Signal in the blocks



Description of the signal processing flow chart provided by A. Ganin GE Health Care.

Question: What are the four <u>main</u> factors in PET that degrade spatial resolution?

- **0% 1.** Positron Range, annihilation photon non-collinearity, PMT light sharing, and detector size.
- **0% 2.** Positron range, annihilation photon non-collinearity, depth of interaction, and detector electron stopping power.
- **0% 3.** Positron range, photon yield, depth of interaction, and detector size.

0%

0%

- Positron range, annihilation photon non-collinearity, block effect, and detector size.
 - Positron range, annihilation photon non-collinearity, Compton scatter, and detector size.

Answer:

What are the four <u>main</u> factors in PET that degrade spatial resolution?

- Positron Range, annihilation photon non-collinearity, PMT light sharing, and detector size.
- 2. Positron range, annihilation photon non-collinearity, depth of interaction, and detector electron stopping power.
- 3. Positron range, photon yield, depth of interaction, and detector size.
- Positron range, annihilation photon non-collinearity, block effect, and detector size.
- 5. Positron range, annihilation photon non-collinearity, Compton scatter, and detector size.

Ref.: Cherry, Sorenson, and Phelps, Physics in Nuclear Medicine, 3rd ed., Saunders ,2003, pages 328-337.