Purpose:

To improve lipid composition determination by localized proton magnetic resonance spectroscopy (MRS) at 9.4 T by minimizing J-coupling modulations of the $2.1 \mathrm{ppm}, 2.3 \mathrm{ppm}$, and 2.8 ppm lipid peaks.

Methods:
Experiments were conducted on corn oil and sesame oil phantoms at 9.4 T. A regular PRESS (Point RESolved Spectroscopy) sequence was used to obtain spectra from the oils with echo times (TEs) of $20,30,40,50,80,120,180$, and 240 ms . A modified PRESS sequence designed to minimize signal losses due to J-coupling was also utilized to acquire spectra of the 2.1 ppm , 2.3 ppm , and 2.8 ppm resonances of the oils with TEs of $40,50,80,120,180$ and 240 ms . The areas of the three lipid resonances obtained by both sequences were plotted as a function of echo time and the resulting curves were fitted to the function $\operatorname{Moexp}(-\mathrm{TE} / \mathrm{T} 2)$, where Mo is proportional to the proton concentration of the target resonance. Oil compositions ($\%$ linoleic acid, $\%$ oleic acid, and $\%$ saturated fatty acids) were determined from extrapolated Mo values for the three resonances and from equations established in the literature.

Results:
The responses of the three proton groups to a regular PRESS sequence were modulated due to J-coupling interactions. However, the responses to the modified PRESS sequence fit well to monoexponentially decaying functions. Oil compositions determined with the PRESS sequence designed to minimize J -coupling effects agreed with results reported in the literature unlike those calculated from spectra acquired with the regular PRESS sequence.

Conclusions:
Lipid compositions determined by localized proton MRS can contain significant errors (as high as 49%), even if they are determined from short-TE PRESS spectra corrected for T 2 relaxation, if the influence of J-coupling is not considered.

