High Dose Rate Radiation Therapy

Calibration, Quality Assurance, and Usage

Silvia Pella, PhD, DABR

Cancer Center at the Wellington Regional Medical Center
Department of Physics at Florida Atlantic University

I have nothing to disclose

Objective

- Understanding of brachytherapy procedure
- Calibration
- Treatment planning system
- Quality assurance protocols
- Radiation safety
What is brachytherapy?

- Greek derivation = short range therapy
- First conformal radiation therapy
- Sealed source placed in or in contact with the tumor providing high dose to the tumor with small volumes of normal tissue irradiated
- Prescriptions developed empirically
- More sophisticated with usage of HDR

- Implant
 - Temporary
 - Permanent
- Dose rate
 - Low dose rate (LDR)
 - 0.4 – 2 Gy per hour
 - Medium dose rate (MDR)
 - 2 – 12 Gy/hr (0.20 Gy/min)
 - High dose rate (HDR)
 - > 12 Gy/hr

- Source placement
 - Intracavitary
 - Body cavity (uterus, vagina), body lumen (trachea, esophagus)
 - Contact
 - External surface (skin, eye)
 - Interstitial
 - Prostate, breast, skin
Radiobiological considerations became important
- Source position very important
 - High dose gradient
 - Small volumes of normal tissue in high dose area, can be tolerated if 1 - 2 cm³
 - Inside the tumor doses much higher than prescribed

Remote afterloader

Ir-192 source - 10 Ci, one check cable
- 18 channels (new with 30)
- Initially designed for bronchial treatments
- Now: prostate, breast, cervix, head and neck, brain, bladder, esophagus, bronchus, bile duct.
Advantages

- Improves radiation control
 - Less probability of misplacing sources or losing sources
- Disadvantages
 - Expensive
 - Shielding
 - Medical events still occur
 - Incorrect parameters entered
 - Emergencies during treatment

Source description

"Sorry. My new phone looks a lot like my skin gun."
- 192Ir
 - Electron Capture
 - Gamma source – large spectrum - average energy 0.380 MeV
 - Short half-life 73.84 days
- **Source tests**
 - Review certificate – physical and chemical form
 - Determine air kerma
 - Leak testing
 - Develop a consistent and reproducible method of calibration.

Quality assurance program

Source storage and exchange
- Storage
 - Additional space other than treatment unit
 - Treatment unit secured
 - DOH regulations (agreement state) or NRC
- Retraction in emergency cases
 - Power failure
 - Source stuck in applicator
 - Hand cranks

- Source exchange
 - Every 3 – 4 months, or more frequent
 - Calibration
 - Tools
 - Well chamber 2
 - Measuring volume 245 cc
 - High ionization current
 - At least five measurements at different depths
 - Stationary position
- Chose correct electrometer
- Polarity
- Max/min current
- Test before using
Method

- In air
- Place buildup under chamber
- Calculate Air kerma

\[S_k = M \cdot N_{sk} \cdot A_{on} \cdot P_{on} \cdot E_{\gamma} \cdot P_{TP} \]

- \(M \) = electrometer reading in nA
- \(N_{sk} \) = calibration factor (Gy h\(^{-1}\) A\(^{-1}\)) from ADCL
- Tolerance 3%
- Time effect (time error)

\[\dot{M}_f = \frac{M(t_2) - M(t_1)}{t_2 - t_1} \]

- Survey the suite walls
- QA
 - Every source change
 - Every day of treating
 - Monthly
 - Annual
- Policies and procedures
 - Well assigned roles
 - Clear instructions for each team member
 - Follow protocols
 - Physician present at all times

- Day of treatment QA
 - Before treatment delivery
 - Interlocks
 - Check the emergency kit
 - Check radiation detectors, survey meter
 - Source’s first dwell position
 - Films
 - GafChromic
 - Video camera

- Using prostate plastic needle (dist to first dwell position 1240 mm)
 - What do we measure?
 - How accurate are we?
Is GafChromic better?

[Image of GafChromic device]

What about your own video system?

[Image of video system in a medical setting]

[Image of measurement scale]

Before using verifications
- Outside diameters
- Treating length
- Chose correct size for individual tumor
- Treatment distance from applicator’s surface
- Scan all applicators
- Test for leakage
- Measure output at a calculated point when possible
- **Transfer tubes**
 - Different lengths
 - Visual inspection for mechanical integrity
 - Store to keep integrity
 - Measure length as received
 - Test connection
 - Test transfer of source

- **Clear labeling method**

- **Check transfer tubes using applicators**
 - Keep all dummies in safe containers for integrity
Prostate HDR - applicators
- Needles implanted in gland
- Normal tissue constrains
 - Anterior rectal wall 75%
 - Bladder neck: 80-85%
 - Urethra:
 - 120% HDR + EBRT
 - 105-110% HDR + EBRT (TURP)
 - 110% HDR Monotherapy

Templates
- Check correct size holes
- Check for locking capabilities
- Prostate needles
 - Metallic
 - Titanium - no artifacts
 - Check first dwell position
 - No markers (dummy)

Plastic
- Need trocar when inserted
- Scan with markers (dummies)
- Dummy indicates first dwell position
- Must be tested for correctness
- Check coincidence of first dwell position with the dummy
- Check the size
Skin applicators

- Leipzig
 - 3 sizes
 - Tested for first dwell position
 - Test connection
 - Use the plastic cover when treating
 - Correct for scatter when planning

- Valencia
 - No scatter correction needed

Calculations and verifications

- Verify diameter
- Distance of treatment
- The F factor
Determining the correct position

- Freiburg flap
 - Placement and repeatability
 - Be innovative
 - Scan first day for planning
 - Use tubes that you know the length
 - Check length
 - Scan and test
- Catheter reconstruction

- Contours and plan

Treatment planning system

"I love this Executive Assistant software."
- Brachytherapy planning
 - More difficult to implement than external
 - Determine source location
 - High dose gradient
 - QA practices less rigorously defined than external
 - Goal: achieve a dose distribution that will treat the PTV without exceeding normal tissue tolerances
- Parameters obtained
 - Source type, length, number of source positions, spacing, dwell times

- Dose calculation
 - Dose rate:
 \[D_s(r, \theta) = S_k \cdot \Gamma \cdot G(r, \theta) \cdot g(r) \cdot F(r, \theta) \]
 - Dose at a point:
 \[D(r, \theta) = D_s(r, \theta) \cdot \frac{T_{1/2}}{0.693} \]

- Commissioning
 - Understand algorithm
 - Using TG-43 dose calculating
 - No heterogeneity corrections
 - Dwell time calculations
 - Requires source strength specifications
 - Convert in dose rate in medium
 - Test cases
 - Test input/output system
 - Verify CT images accuracy
• Plan verification
 • Second hand dwell time and or dose at point calculation
 • RadCalc, Mucheck, others
 • Manual calculation
 • IPSA versus Manual forward planning
 • Constrains
 • Faster
 • Reliability
 • Verify transfers to console
 • Dwell positions
 • Dwell times

• Treatment delivery/set-up verifications
 • Document everything
 • Make the schedule such that plan is dosimetrically checked before treating the patient (film, Mosfet/TLDs)
 • Correct connections: transfer tubes-applicators
 • Correct applicator size
 • Correct insertion/placement
 • Survey patient before and after treatment

Conclusions:
Train and get trained continuously
You are never too cautious
Redundancy is good
Stay informed and up to date

"YOU USED TO BE A LOBSTER? WHAT A CONVERSATION! I USED TO BE A DEMOCRAT!"
References

1. ICRU 38
2. TG 40
3. TG 41
5. TG 43
6. TG 59
Design criteria: HDR treatment rooms
- Follow similar guidelines to those of accelerator rooms
- Maze and door must typically be included
- Similar interlocks to those used in accelerator rooms are required

Major Difference:
- All walls are primary barriers
- Why:
 - Source is positioned anywhere
 - Radiation is emitted isotropically and uncollimated from source
 - Work Load specified as air kerma in air per week or year

Determined by
- Max. Source Activity: 370 GBq (10 Ci)
- Max. Pts. Treated per day: 10/day
- Treatment Days: 5/week
- Max. treatment time: 10 min (10 Ci) per patient
- Air kerma rate constant for Ir-192 = 4.1 µGy/m²/cur. h
 = 3.4 X 10⁶ µGy/m²/week
E = (Permissible Limit \times distance^2) / (Work Load \times Occupancy factor)

- B = 2.45 TVLs
- TVL Concrete (Ir-192) = 152 mm
- TVL Concrete (Co-60) = 218 mm

- Brachytherapy Room design features
 - Require radiation monitor at the door
 - Manual afterloading: Warning signs required
 - Remote afterloading: Interlocks at the entrances
- Information required for an authorization to use isotopes for radiation therapy:
 - Description of source/sources used:
 - Isotope
 - Energy
 - Intention of use
 - Type
 - Remote/Remote
 - Manual

- Drawings to scale - including:
 - Direction of north
 - Exact position of the equipment
 - Location of doors and windows
 - Ducts or other penetrations through a wall relevant
 - Identification of rooms (number)
 - Cross sections (above and below?)
 - Exact distances where relevant

- Indications of adjacent areas/buildings
- Any features affecting radiation safety
- Indication of radiation protection measures:
 - Emergency off buttons
 - Monitors
 - Safes for sources
 - Shielding - normal in walls and additional
- Acceptance testing
 - Mechanical and electrical operations of the device and radiation monitors
 - Mechanical and electrical features of the facility
 - Proper operation of the sources
 - Proper operation of the planning system
- Facility testing
 - Door interlock
 - Radiation warning/detectors working
 - Video survey working

- Facility testing
 - CCTV camera function: at console and/or at nurse station
 - Patient intercom
 - Radiation warning lights: inside room, at door entrance, at control console
 - Function of independent audible GMI alarm
 - Door interlock checks
 - Controlled area signs posted and/or illuminated
 - Function of audible time delay interlock

- Machine function
 - Test basic functions by programming and carrying out a simulated treatment
 - Verify that all displays are correct
 - Verify data at console agrees with programmed data
 - Check printout of date, time, source activity, etc.
 - Test backup storage batteries by periodically (once a month) simulating loss of power
 - Test emergency stop
 - Compare machine times with a stopwatch
 - Check source safety lock when fitted.
Radiation safety
- Radiation surveys should indicate expected dose levels.
- Personal dosimeters should be used to monitor personal doses especially in situations requiring source transfer from safe to remote unloading machine.
- Simulated emergency procedures should be carried out so that operating staff are well versed in the requisite volume.
- Dose-rate measurements inside the treatment room should be available so that optical path to patient is known before room entry.
- Personal dosimeters available for emergency use.

Emergency instructions and manuals
- Operator’s manual
 - Function of the console
 - How to program a treatment
 - Check the time factor
 - Emergencies procedures
- List of authorized users (posted)
- List of names with phone # for emergencies (posted)
- List of error messages

Physicist manual
- Radiation survey when receiving new source
- Returning old source procedure
- Source exchange procedure
- Floor plan for room survey
- Check list for QA procedures
- Source calibration procedures

Nurses manual
- Physical features of sources
- Functioning of independent radiation monitoring system
WHY ERRORS?

- Individual mistakes, lapses in judgment, or device malfunctions
- Transient malfunction of a device (afterloader, applicator, or planning system)
- Failure of a team member to follow established policies
- Making a mistake while following policies
- Relying on policies and procedures which are inadequate

Failure to follow procedures may be caused by

- Inadequate training, inadequate supervision, or excessive time pressure.
- Making mistakes while following policies is often a consequence of
 - Inadequate documentation or training
 - Poor intra-team communication

Poorly designed treatment-planning and remote-afterloader interfaces,

- An inexperienced or incompetent team member
- Suboptimal working conditions, or
- Excessive time pressure.
Medical events
- Wrong individual
- Wrong radionuclide
- Wrong site
- Dosage differs by more than 20% of Rx if over 3 fractions, and 50% if 3 fractions or less
- Leaking sealed source
- Temporal implants case: if any sources were not removed

What do we do?
- Report immediately to:
 - RSO
 - Oncologist
 - Director
- Report by phone within 24 hrs to DOH
- Written report with plan in 14 days
- Who is informed and by who?

Minor emergencies
- Loose source guide tube connector
- Vault door not properly closed
- Kink in the tube
- Ring not locked, etc.
- Easy recovery actions that allowing treatment to resume
- Major Emergencies
 - Source retraction failure
 - Patient medical emergency
 - Total computer failure, etc.
 - Involve operator, radiation oncologist, the physicist.

- Establish emergency procedures
 - USNRC and TG-59 recommends
 - Users shall learn and periodically retrain to operate the devices and to respond properly to emergencies
 - Written emergency procedures describing actions to be taken, including surgical intervention, should the source not return to the shielded container at the conclusion of treatment
 - Appropriate staff and equipment available in support of these procedures.

- Main Goal of Emergency Procedures
 - Reduce the radiation dose to the patient by retracting the source from the patient as soon as possible
 - Minimize the radiation exposure to personnel performing the source retraction.
Routine emergency equipment

At the console outside the room:
- Sign: "Danger-Open Radiation Source-Keep Out"
- Geiger-Teknix meter – 0.1–100 mR/hr range
- Geiger survey meter – 1–1,000 mR/hr range

Inside the room:
- Emergency Container
- Funnels
- Kelly surgical clamps
- High quality flashlight and fresh spare batteries
- Suture removal kit
- Suture kit

Emergency container

Mobile

Large and deep enough

Radiation survey meters
Hope your HDRs are uneventful
Thank you
??? Questions ???