Stereotactic Body Radiotherapy (SBRT) for Liver Metastases

Richard J. Lee, M.D.
Dept. of Radiation Oncology
Mayo Clinic Florida
ACMP 2011

I have no commercial interests or off label usage to disclose.

Overview

I. Objectives
II. Definition of SBRT
III. Technological Advances
IV. Treatment of Liver Metastases
V. Summary

Objectives

- To understand the definition and technical aspects of SBRT
- To understand the rationale and indications for SBRT for liver metastases
- To review the clinical outcomes of SBRT of the liver, including efficacy and toxicity
- To discuss the Mayo Clinic Florida experience with utilizing SBRT for the liver
Overview

I. Objectives
II. Definition of SBRT
III. Technological Advances
IV. Treatment of Liver Metastases
V. Summary

Stereotactic Body Radiotherapy

- Delivery of a large dose of radiation to an extracranial lesion in a limited number of high-dose treatments
 - 5 or fewer fractions
- Multiple external beams are utilized
 - precise, conformal dose distribution to the target
 - relative sparing of the nearby normal tissues

Stereotactic Body Radiotherapy

- Modeled after intracranial stereotactic radiosurgery (SRS)
 - Treatment of brain metastases with a single high dose fraction
 - Precise targeting and dose delivery using the skull as a reference system
 - Allows for ablative doses to be delivered with acceptable toxicity in appropriately selected pts

Stereotactic Body Radiotherapy

- Stereotactic RadioSurgery
 - Margins can be minimized with the use of a rigid head frame fixed to the skull
Stereotactic Body Radiotherapy

- Extracranial sites are subject to movement from normal physiological processes
 - Respiration
 - Heartbeat
 - Involuntary muscle contraction (e.g. GI tract)

Overview

I. Objectives
II. Definition of SBRT
III. Technological Advances
IV. Treatment of Liver Metastases
V. Summary

Technological Advances

- Improved immobilization and targeting techniques
- Compensation for respiratory movement
- Improved imaging and targeting
- Advancements in treatment delivery systems

Technological Advances

- Immobilization and Targeting
 - Custom body cast with radiopaque markers
 - Establishes coordinate system in 3-dimensional space
 - Implantation of markers internally (fiducials)
 - Facilitate tumor targeting
Technological Advances
- Compensation for respiratory movement
 - Direct abdominal compression
 - Reduces normal breathing (tidal volume)
 - Decreases maximum displacement during respiration by 12-13 mm

Question 1: Direct abdominal compression can reduce respiratory motion of liver lesions by how many millimeters?

- 1. 8 mm
- 2. 10 mm
- 3. 12 mm
- 4. 15 mm
- 5. 20 mm

13% 1. 8 mm
36% 3. 12 mm
13% 4. 15 mm
5% 5. 20 mm
Question 1: Direct abdominal compression can reduce respiratory motion of liver lesions by how many millimeters?

- Answer C: 12-13 mm

Technological Advances

- Image guided radiation therapy (IGRT)
 - KV & MV Imaging, Cone Beam CT
 - Allows verification of the target position with the patient in the treatment position
 - Radiographic imaging is performed immediately before a treatment and/or during an individual treatment session

Cine Imaging

- Image guided radiation therapy (IGRT)
 - Electronic Portal Imaging (EPI)
 - Verifies target position during treatment
 - Allows for evaluation of intrafraction movement of the target
 - Cine (MV) imaging
 - Cine images may be taken during treatment to verify that the target remains within the treatment field while the beam is on
4D CT Imaging
- Image guided radiation therapy (IGRT)
- 4D-CT imaging (Cone Beam CT)
 - Allows us to see the amount of liver movement present with the patient’s normal respiratory cycle
 - Enables respiratory gating

Technological Advances
- SBRT may be delivered through a variety of machines:
 - Linac-based SBRT (e.g. Novalis, Varian)
 - Cyberknife

Overview
I. Objectives
II. Definition of SBRT
III. Technological Advances
 1. SBRT at Mayo Clinic Florida
IV. Treatment of Liver Metastases
V. Summary
SBRT at Mayo Clinic Florida

- Immobilization and Targeting
 - Reproducible treatment position with Bodyfix device

(BodyFix, Medical Intelligence, Schwabmuchen, Germany)

SBRT at Mayo Clinic Florida

- Immobilization and Targeting

(BodyFix, Medical Intelligence, Schwabmuchen, Germany)

SBRT at Mayo Clinic Florida

- Infrared camera/detector
- Gating workstation
- Multi-slice CT scanner
- Infrared Reflector
- Control system

(Real-Time Position Management (RPM) respiratory gating system, Varian Medical, Palo Alto, CA)
SBRT at Mayo Clinic Florida
- CT simulation images are fused with MRI images to better delineate the tumor volume.

SBRT at Mayo Clinic Florida
- Develop a highly conformal treatment plan w/ or w/out gating

SBRT at Mayo Clinic Florida
- Fiducial gold seeds (1.2 mm x 3 mm) are placed prior to treatment
- Cine imaging of implanted fiducial markers with respiratory gating to evaluate intrafraction movement during treatment

Cine Imaging
SBRT at Mayo Clinic Florida

- KV images are taken prior to treatment to verify target position based on fiducial markers

Lateral kV-DRR match

AP kV-DRR match

Overview

I. Objectives
II. Definition of SBRT
III. Technological Advances
IV. Treatment of Liver Metastases
 - MSKCC/Stanford study
 - Multi-institutional Phase I/II trial
 - Mayo Clinic Phase I/II trials
V. Summary

Liver Metastasis

- Local control of oligometastases may yield improved systemic control and prolonged survival
- Researchers began exploring utilizing this stereotactic technique for extracranial sites, including the liver, lungs, spinal cord

Liver Metastasis

- Common site for metastatic disease from a wide variety of malignancies
 - Management is dependent on the location and extent of hepatic disease, as well as the extent of extraneoplastic disease
 - Median survival 8 mos with supportive care alone

Treatment Options for Liver Metastasis

Surgery
- Resection of a limited number of intrahepatic metastases has been shown to provide long term benefit.
- 5-yr Relapse Free Survival (RFS) after resection of isolated colorectal or neuroendocrine liver metastases is ~ 30% (20-46%).

Non-surgical treatment options
- Chemotherapy
 - Systemic or hepatic arterial chemotherapy
 - Despite aggressive chemotherapy, median survival is ~ 12-14 months.

Stringent eligibility criteria:
- Medically fit
- Disease limited to the liver
- Location
- Multifocality
- Adequate reserve of normal liver parenchyma
- Only a small fraction of patients are eligible for metastectomy (~ 10%).

Non-surgical treatment options
- Tumor Ablation (e.g. radiofrequency ablation, ethanol injection, cryotherapy)
- Strict selection criteria
- Most patients are not appropriate candidates.
Treatment Options for Liver Metastasis

- Non-surgical treatment options
 - Radiation Therapy

Liver Toxicity

- Normal hepatocytes are highly sensitive to radiation therapy

- Toxicity
 - Fatigue
 - Nausea
 - Gastritis
 - Liver enzyme dysfunction

Liver Toxicity

<table>
<thead>
<tr>
<th>Common Toxicity Criteria (CTC) Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTCAE v4.0</td>
</tr>
<tr>
<td>Nausea</td>
</tr>
<tr>
<td>Fatigue</td>
</tr>
<tr>
<td>Gastritis</td>
</tr>
<tr>
<td>Liver Dysfunction</td>
</tr>
</tbody>
</table>

Liver Toxicity

- Radiation Induced Liver Dysfunction (RILD) is the dose limiting toxicity
 - Clinical syndrome
 - Anicteric hepatomegaly
 - Ascites
 - Elevated liver enzymes (alkaline phosphatase)
 - 2-8 weeks after completion of radiation
Liver Toxicity

- Emami, et al.
 - Whole liver irradiation of 30 Gy carried a 5% risk of RILD
 - Whole liver irradiation of 40 Gy carried a 50% risk of RILD

Liver Toxicity

- QUANTEC (Quantitative Analysis of Normal Tissue Effects in the Clinic)
 - Whole liver – GTV conventional irradiation of <30-32 Gy carries <5% risk of RILD
 - Doses >30-35 Gy to the whole liver are associated with a higher probability of RILD

Question 2: At what dose of radiation to the whole liver is there a 5% chance of RILD?

- Answer: C - 30 Gy (30-32 Gy)

Liver Dose Escalation

- Prospective trial to test probability model parameters for dose escalation
 - Normal tissue complication probability (NTCP) model calculated from previous data
 - Pts with primary hepatobiliary disease or colorectal cancer metastatic to the liver with normal liver function

- Compared to whole liver ± hepatic artery Fluorodeoxyuridine
 - Median dose: 57 Gy (range 40.5 to 81 Gy)
 - Actual rate of complications (1/21 pts, 4.8%), close to the calculated rate (9%)

Liver Dose Escalation

- Median dose: 60.75 Gy in 1.5-Gy BID (range 40-90 Gy)
- Median F/U: 16 mos (26 mos in pts who were alive)

Ben-Josef E., et al., J Clin Oncol 23:8739-8747, 2005

- Median survival: 15.8 mos
- Actuarial 3-year survival: 17%
- 61% failed within the liver
- Acceptable overall toxicity:
 - grade 3 (21%)
 - grade 4 (9%)
 - grade 5 (<1%)

Ben-Josef E., et al., J Clin Oncol 23:8739-8747, 2005
Liver Dose Escalation

- Overall survival of patients by dose quartile. Patients receiving 75 Gy or more had significantly better survival ($P = 0.01$).

Liver Dose Escalation

<table>
<thead>
<tr>
<th>Organ</th>
<th>2D Dose</th>
<th>3D dose</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>60-70</td>
<td>102</td>
<td>1%/Gy 2 yr OS</td>
</tr>
<tr>
<td>Prostate</td>
<td>68-70</td>
<td>78-86.4</td>
<td>1-2%/Gy increase in 5 year PFS</td>
</tr>
<tr>
<td>Liver</td>
<td>30</td>
<td>90</td>
<td>24 mos MS for ≥70 Gy vs 6-10 mos MS for less</td>
</tr>
<tr>
<td>Head & Neck</td>
<td>70-76</td>
<td>70-76</td>
<td>Decreased Xerostomia</td>
</tr>
</tbody>
</table>

Biologically Effective Dose

- Biologically effective dose (BED or E/α): an approximate quantity by which different radiotherapy fractionation regimens may be intercompared:
 - $BED = E/\alpha = nD \times (1 + (D / (\alpha/\beta)))$
 - $n =$ number of fractions
 - $D =$ dose/fraction
 - $nD =$ total dose
- Difficult to compare with SBRT fractionation

Liver Toxicity

- AAPM TG 101
- Threshold dose
 - Minimum critical volume below 700cc
 - \geq Grade 3 toxicity

<table>
<thead>
<tr>
<th>Fraction</th>
<th>One Fraction</th>
<th>Three Fractions</th>
<th>Five Fractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Gy</td>
<td>19.2 (4.8 Gy/fx)</td>
<td>21.0 (4.2 Gy/fx)</td>
<td></td>
</tr>
</tbody>
</table>
Question 3: What is the AAPM TG 101 single fraction threshold dose to the liver?

- Answer: D - 9.1 Gy

Treatment of 1° Liver Tumors and Mets - MSKCC/Stanford

- 26 pts treated for 40 identifiable lesions
 - 19 hepatic metastases
 - 5 IHCC
 - 2 recurrent HCC
- Prescribed RT dose escalated from 18 Gy up to 30 Gy in 4-Gy increments

MSKCC/Stanford
- Phase I dose-escalation study
- Explore the feasibility & safety of treating primary and metastatic liver tumors with single-fraction SBRT

Treatment of 1° Liver Tumors and Mets - MSKCC/Stanford

- Results
 - All pts tolerated the single-fraction SBRT well w/o developing a dose-limiting toxicity
 - 9 acute Grade 1 toxicities
 - 1 acute Grade 2 toxicity
 - 2 late Grade 2 GI toxicities

Treatment of 1° Liver Tumors and Mets - MSKCC/Stanford

- Results
 - Median f/u: 17 mos (range 2-55 mos)
 - Cumulative risk of LF @ 12 mos: 23%
 - 15 pts died:
 - 11 liver mets
 - 4 primary liver tumors
 - Median survival: 28.6 mos
 - 2-year actuarial OS: 50.4%

Treatment of 1° Liver Tumors and Mets - Multi-institutional

- Conclusions
 - Feasible & safe to deliver single-fraction, ↑ dose SBRT to 1° or metastatic liver malignancies measuring ≤ 5cm
 - Single-fraction SBRT for liver lesions show promising local tumor control w/ minimal acute & long-term toxicity
 - Viable nonsurgical option
 - Further studies warranted to evaluate both control rates & impact on QOL

Treatment of Liver Mets - Multi-institutional

Multi-Institutional Phase II/II Trial of Stereotactic Body Radiation Therapy for Liver Metastases

Treatment of Liver Mets - Multi-institutional

- Phase I dose: Total dose safely escalated from 36 Gy to 60 Gy
- Phase II dose: 60 Gy in 3 fractions
- 1° endpoint: local control
 - Lesions w/ at least 6 months of radiographic f/u were considered assessable for local control
- 2° endpoints: toxicity & survival

Results

- Local progression: only 3 lesions progressed at a median of 7.5 mos (range, 7 to 13 mos)
- Actuarial in-field local control rates:
 - 1-year: 95%
 - 2-year: 92%
 - 2-year local control: 100% for lesions with max diameter of \(\leq 3 \) cm

Results

- Toxicity
 - Only 1 pt experienced grade 3 or higher toxicity (2%)
 - Skin breakdown requiring surgical debridement and a trial of hyperbaric oxygen (48 Gy)
 - No grade 4 or 5 toxicity
- Median survival: 20.5 mos

Results

- 63 hepatic lesions in 47 patients
 - 69% had received at least 1 prior systemic therapy regimen for metastatic disease (range, 0 to 5 regimens)
 - 45% had extrahepatic disease
- Median follow-up (assessable lesions): 16 mos (range, 6 to 54 months)

Treatment of Liver Mets - Multi-institutional

- Conclusions
 - Multi-institutional, phase I/II trial demonstrates that high-dose liver SBRT is safe & effective for the treatment of pts with 1-3 hepatic mets.

Question 4: What is the 2-year actuarial local control rate reported by Rusthoven, et al. in their multi-institutional review of SBRT for metastatic liver disease?

- Answer: B – 2 year actuarial local control was 92%

Efficacy of SBRT for Liver Metastasis

<table>
<thead>
<tr>
<th>Author</th>
<th># of targets</th>
<th>Median follow up</th>
<th>Total Dose (Gy)</th>
<th># of fractions</th>
<th>Local Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blomgren, 1995</td>
<td>21</td>
<td>9 mo</td>
<td>20-45</td>
<td>1-5</td>
<td>95%</td>
</tr>
<tr>
<td>Herfarth, 2001</td>
<td>60</td>
<td>6 mo</td>
<td>14-26</td>
<td>1</td>
<td>78%</td>
</tr>
<tr>
<td>Sato, 1998</td>
<td>23</td>
<td>10 mo</td>
<td>50-60</td>
<td>5-10</td>
<td>100%</td>
</tr>
<tr>
<td>Wulf, 2007</td>
<td>56</td>
<td>15 mo</td>
<td>28-37.5</td>
<td>3-4</td>
<td>1 yr: 92% 2 yr: 66%</td>
</tr>
<tr>
<td>Katz, 2007</td>
<td>174</td>
<td>14.5 mo</td>
<td>30-55</td>
<td>7-20</td>
<td>10 mo: 76% 20 mo: 57%</td>
</tr>
<tr>
<td>Lee, 2009</td>
<td>143</td>
<td>11 mo</td>
<td>30-60</td>
<td>6</td>
<td>1 yr: 71%</td>
</tr>
<tr>
<td>Rusthoven, 2009</td>
<td>63</td>
<td>16 mo</td>
<td>60</td>
<td>3</td>
<td>1 yr: 95% 2 yrs: 92%</td>
</tr>
</tbody>
</table>

Small studies with wide variety of fractionation schemes, but local control was excellent at 1 year (71-100%).
Toxicity of SBRT for Liver Metastasis

Comparison of Toxicity Between Different Liver SBRT Regimens

<table>
<thead>
<tr>
<th>Author</th>
<th>No. Patients</th>
<th>No. Fractions</th>
<th>Grade 1-2</th>
<th>Grade 3-4</th>
<th>Grade 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blomgren, 1998</td>
<td>50</td>
<td>2-3</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Sato, 1998</td>
<td>18</td>
<td>2-12</td>
<td>5%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>Herfarth, 2004</td>
<td>37</td>
<td>1</td>
<td>NR</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Wulf, 2001</td>
<td>24</td>
<td>3</td>
<td>29%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Katz, 2007</td>
<td>69</td>
<td>7-20</td>
<td>20%*</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Wulf, 2006</td>
<td>44</td>
<td>3-4</td>
<td>26%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Méndez Romero, 2006</td>
<td>25</td>
<td>3-5</td>
<td>96%</td>
<td>16%</td>
<td>4%</td>
</tr>
<tr>
<td>Rusthoven, 2009</td>
<td>47</td>
<td>3</td>
<td>NR</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>Goodman, 2010</td>
<td>26</td>
<td>1</td>
<td>54%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>van der Pool, 2010</td>
<td>20</td>
<td>3</td>
<td>95%</td>
<td>15%</td>
<td>0%</td>
</tr>
<tr>
<td>Tzou, 2011</td>
<td>9</td>
<td>1</td>
<td>33%</td>
<td>22%</td>
<td>0%</td>
</tr>
</tbody>
</table>

*Rate of liver function toxicity only. Percentage of non-hepatic toxicities (fatigue and nausea) was not documented in manuscript.

Well-tolerated treatment with minimal to no grade 3-5 toxicity.

Phase I: Single Fraction SBRT for Liver Mets-Mayo

To determine the MTD of SBRT in pts with liver mets

Metastatic liver lesions ≤ 5 cm enrolled at Mayo Clinic Florida and treated single fraction SBRT and followed prospectively

Phase I: Single Fraction SBRT for Liver Mets-Mayo

Protocol Schema:
- Dose escalation from 15 to 25 Gy in 1 fraction
 - 5 Gy increments
- 3 pts per dose level (15, 20, 25 Gy)
- BED = 87.5 Gy (for 25 Gy/1 fraction)

9 Participants Enrolled

Dose Level 1 (15 Gy) 3 Participants
Dose Level 2 (20 Gy) 3 Participants
Dose Level 3 (25 Gy) 3 Participants

Technical Aspects
- Fiducial markers placed w/in 1 week of SBRT
- Image-guidance (KV imaging)
- Gated treatment
- 6 MV photons using a standard linear accelerator

Tumor Measurements
- Performed via CT or MRI abdomen at 3, 6, and 9 mos post-treatment

Tzou, et al. ASTRO 2010
Phase I: Single Fraction SBRT for Liver Mets-Mayo

- **1st Endpoint:** Maximum Tolerated Dose (MTD)
 - Dose limiting Toxicity:
 - Occurrence of radiation induced liver dysfunction (RILD)
 - Clinical liver dysfunction/failure adverse event of grade ≥ 3 according to CTCAE v3.0
 - Assessment (toxicity, hem labs, coags, & chemistries) performed:
 - prior to SBRT, & at wks 2, 4, 6 & 8 post-treatment
 - at months 3, 6, & 9 post-treatment

- **Results**
 - No dose limiting hepatic toxicities observed in any of the 9 pts

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>15 Gy</th>
<th>20 Gy</th>
<th>25 Gy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>↑ Alk Phos</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ AST</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUG Pain</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ ALT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUG Pain</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Conclusions**
 - Single fraction SBRT administered at 25 Gy is well tolerated and safe for treatment of 1-6 liver mets up to 5 cm
 - No dose-limiting toxicity (DLT) was observed at any level
 - DLT = RILD as defined by clinical liver dysfunction/failure of ≥ Grade 3
Phase II: Single Fraction SBRT for Liver Mets-Mayo

- Phase II Protocol
 - To evaluate:
 - Tumor response
 - Progression-free survival
 - Safety
 - Effect on quality of life
 - SBRT administered at 25 Gy in 1 fraction

Phase II: Single Fraction SBRT for Liver Mets-Mayo

- Results
 - Tumor Response
 - 5/9 pts: PR or SD post treatment at 3 mos

Question 5: Up to what size lesion was treated by SBRT at Mayo Clinic Florida per protocol?

- 68%
- 3%
- 3%
- 26%
- 0%

1. 6.5 cm
2. 6.0 cm
3. 5.8 cm
4. 5.5 cm
5. 5.0 cm

68% ✅ 5.0 cm
Question 5: Up to what size lesion was treated by SBRT at Mayo Clinic Florida per protocol?

- Answer: E - 5 cm

Overview

I. Objectives
II. Definition of SBRT
III. Technological Advances
IV. Treatment of Liver Metastases
V. Summary

Summary

- Definition and technical aspects of SBRT
 - Delivery of a large dose of radiation therapy to extracranial lesions in typically 5 or fewer high-dose treatments
 - Multiple technological advances have allowed for SBRT
 - Improved immobilization and targeting techniques
 - Compensation for respiratory movement
 - Improved imaging and targeting
 - Advancements in treatment delivery systems

Rationale and indications for liver SBRT

- One of several non-surgical treatment options
 - Comparable to other local ablative therapy options, non-invasive and less stringent eligibility criteria
 - Numerous liver dose escalation trials attempting to determine dose vs. toxicity
 - Limited intrahepatic lesions with limited and/or stable extrahepatic disease
Summary

- Clinical outcomes, including efficacy and toxicity
 - Small studies with wide variety of fractionation schemes, but excellent 1-year local control (71-100%)
 - Small studies show well-tolerated treatment with minimal to no grade 3-5 toxicity

Summary

- MCF experience
 - SBRT is a safe, well-tolerated, and efficacious treatment alternative for non-surgical candidates with a limited number of small to moderate sized liver metastases.
 - The optimal dose and fractionation scheme has yet to be determined and continues to be under investigation.